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Abstract. Automata-based models have enjoyed widespread application to urban 
simulation in recent years. Cellular automata (CA) and multi-agent systems (MAS) have 
been particularly popular. However, CA and MAS are often confused. In many instances, 
CA are paraphrased as agent-based models and simply re-interpreted as MAS. This is inter-
esting from a geographical standpoint, because the two may be distinguished by their spa-
tial attributes. First, they differ in terms of their mobility: CA cannot „move”, but MAS are 
mobile entities. Second, in terms of interaction, CA transmit information by diffusion over 
neighborhoods; MAS transmit information by themselves, moving between locations that 
can be at any distance from an agent’s current position. These different views on the basic 
geography of the system can have important implications for urban simulations developed 
using the tools. It may result in different space-time dynamics between model runs and may 
have important consequences for the use of the models as applied tools. In this chapter, 
a patently spatial framework for urban simulation with automata Tools is described: Geo-
graphic Automata Systems (GAS). The applicability of the GAS approach will be demon-
strated with reference to practical implementations, showing how the framework can be 
used to develop intuitive models of urban dynamics. 

1. Introduction 

The practice of model-design, model-building, and the application of models in 
the geographical sciences is in the midst of a transformation. Recent shifts in the 
art and activity of spatial simulation may be considered as the end-result of a dec-
ade or so of research and development, currently gathering critical momentum. 
This is manifest, most vividly, in the emergence of a new class of models, and a 
new generation of applications, an approach that some authors have begun to refer 
to as geosimulation (Benenson and Torrens 2004a; Benenson and Torrens 2004d). 

In this chapter, we will explore the concept of geosimulation, in the context of 
its use in building urban models. We will introduce a new methodology for con-
structing geosimulation models, focused on the idea of spatial automata devices—
what we call Geographic Automata Systems. We will also demonstrate the use of 
these techniques for urban applications, referring to the development of simula-
tions of urban growth. 

In section 2 geosimulation is discussed as a new approach to simulation, which 
is defined more concretely in section 3. Automata are introduced in section 4 as 
the favored modeling tool for geosimulation work. In section 5, it is argued that 
there is strong need for a patently spatial set of geosimulation tools (elsewhere in 
this volume, Benenson and colleagues describe software for this very purpose). 
Our work in this area is introduced in section 6, with reference to Geographic 
Automata Systems. The problem of modeling urban growth—sprawl in particu-
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lar—is discussed in section 7. Naturally, we argue for a geosimulation approach 
and we describe an urban growth model based on geosimulation ideas, and built as 
a Geographic Automata System, in section 8. The practical use of this model to 
explore growth phenomena is described in section 9, before concluding remarks 
appear in section 10.  

2. Geosimulation as a new trend in spatial simulation 

There is a distinguished lineage to the development of spatial simulation method-
ology, and geosimulation represents what we might consider as the new wave of a 
long line of spatial simulation developments. The idea behind geosimulation is 
best considered in terms of the distinction between that approach to modeling and 
what may have come before it. The distinction between older and newer is not 
discrete; very little is in the world of geography.  

More conventional spatial simulation is perhaps aptly considered as dealing 
with the exchange of entities and activities between relatively coarsely-considered 
units of space, and describing those exchanges in relatively aggregate terms. That 
is a naïve characterization, but it is only intended to serve a comparative use. By 
means of contrast, we can consider newer-style approaches—our notion of geo-
simulation—as extending, substituting, and supplanting conventional models. The 
geosimulation approach is more likely to be characteristic of models that handle 
massive quantities of geographic entities, each represented at an atomic (individ-
ual and independent) scale of consideration. Exchanges of and between these enti-
ties is mediated by the connections that exist between elementary components of 
geographical systems, considered dynamically and interactively. Our ability to 
simulate geographical phenomena has advanced to the point where entity-level 
behaviors can be translated, directly, into artificial computational environments—
code. That code can be used to generate and play with incredibly life-like geo-
graphic systems—spaces, phenomena, entities—in completely artificial simulated 
environments; in silico, as Steven Levy might refer to them. 

Of course, the distinction between possessing the ability to do something, and 
actually doing it, is rather important in simulation contexts. Spatial models are 
hungry things and developers must feed them data, methodology, and tools, before 
they can get them to perform any tricks. We think our Geographic Automata Sys-
tems can help. 

Abstracting from geography for a moment, geosimulation could be thought of 
in terms of broader trends in general simulation. We might draw analogies be-
tween geosimulation and parallel developments in the social and physical sci-
ences: bottom-up modeling as an alternative or extension of top-down simulation 
(Epstein, 1999); open and transparent simulation in lieu of black-box modeling 
(Wiener, 1961); notions of phenomena as complex adaptive systems (Johnson,  
2001), etc. The contribution of geographers to these developments is significant. 
Geographers are building new tools within a larger simulation community (Dibble 
and Feldman, 2004), some open source in nature (Clarke and Gaydos, 1998), and 
others to be shared as software (Benenson et al., 2004; Semboloni et al., 2004). 
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The contribution of geographer’s ideas to a growing debate about real-world sys-
tems should not be under-estimated; space is beginning to feature prominently in 
cross-disciplinary theory-building and testing in this context (Gimblett, 2002). 
Rather than poaching methodologies, tools, and ideas from other fields; geography 
is beginning to have a significantly reciprocal influence across a wide range of 
fields on the outskirts of its interests. To a certain extent, geosimulation is a cata-
lyst for this activity. 

3. Defining geosimulation 

We have devoted lots of dead trees to specifying geosimulation as a modeling ap-
proach, and readers that are particularly interested in that material might wish to 
read some of that work (Benenson and Torrens, 2004a; Benenson and Torrens, 
2004c; Torrens, 2004). Put succinctly, geosimulation might be defined with refer-
ence to its explicit attention to space and geography, both methodologically and in 
terms of its intellectual foundations. 

First, we can consider issues of representation in geosimulation models. 
Whereas more conventional spatial modeling handles representation of geographic 
units in a relatively aggregate fashion, geosimulation-style models are more judi-
cious in their representation of geography. The traditional consideration of aver-
age and spatially-modifiable geographical units or (statistically) mean individuals 
is replaced in geosimulation; units are regarded, instead, as spatially non-
modifiable entities, with individual descriptions and independent functionality. 
Where aggregates are considered, they are more than likely formulated genera-
tively, built from the bottom up by assembling individual entities for the purposes 
of accomplishing an aggregate task or amassing an aggregate structure. 

Second, the treatment of behavior in geosimulation models is important. Under 
the geosimulation approach, simulated entities are often individual; likewise, they 
are commonly independent and autonomous in their behavior. From a synoptic 
perspective, the behavioral focus is often on disaggregate interactions in a systems 
setting. The independence is significant; attention turns to the specification of in-
dividual-level behaviors, and immediately this casts the developer’s attention to 
issues such as cognition, motivation, mobility, etc. Independence has further im-
plications for considering space-time dynamics; we will discuss this in more detail 
shortly. The move toward autonomy in behavior simulation is also noteworthy; 
entity behavior is not necessarily treated as homogenous across the system being 
considered: coffee in the city, but cocoa in the suburbs. Moreover, and borrowing 
from complexity studies, collective behavior is often modeled as a by-product of 
spatial interaction; communities emerge as a function of neighbor interaction, for 
example, with interaction defined in terms of a range of behaviors from perception 
to budgeting (Torrens, 2001). 

Third, geosimulation is markedly distinct in its treatment of time and dynamics, 
particularly so when compared against more conventional techniques that are 
popularly employed in spatial simulation. Under the geosimulation approach, 
models are commonly designed as event-driven, rather than time-driven. Time in 
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such simulations moves within discrete packets of change, based on the internal 
clocks of simulated components. When put together to form a system, update of 
these clocks may be synchronous or asynchronous; the methodology is relatively 
flexible in this regard. 

4. Automata as the favored geosimulation methodology 

Methodologically, geosimulation research and development has been dominated 
by automata-based approaches to model-building. Cellular automata (CA), and 
their sibling multi-agent systems (MAS), are particularly popular (O'Sullivan and 
Torrens, 2000; Torrens, 2002a, 2003, 2004; Torrens and O'Sullivan 2001). We 
would like to argue that an approach based on spatial-specific processing de-
vices—Geographic Automata—is perhaps more appropriate for geographic re-
search. Let us examine automata before we begin that discussion. 

At its heart, an automaton is a processing mechanism (whether tangible, or 
mathematical). It is a discrete entity endowed with some structural variables 
(states) and capable of receiving similar information as input from the outside 
world. A given automaton’s states change over time (transition) according to a set 
of rules; these rules evaluate the internal state of the automaton at a point in time 
and the information input to the automaton at the same time, to determine the 
automaton’s state in a subsequent point in time (Figure 1a). Changes to automata 
states operate in a discrete temporal domain. Alan Turing’s hypothetical comput-
ing device is a classic example. 

 
 
 

a) 

 

b) 

 

 

Fig. 1. (a) An automaton changes state (color) between two time steps, based on input. (b) 
Varying cellular automata neighborhood configurations in a 2D cell-space. 
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Cellular automata are an extension of the automata concept, in which the space 
in which an automaton resides becomes important to the specification. CA are an 
arrangement of connected individual automata, arranged to form a partitioned 
space. Think of the pixels on a TV screen and you have the general idea. Each unit 
in the partition is an automaton as described previously. However, input is now 
drawn from other automata in a localized area around a given automaton—the 
neighborhood (Figure 1b). 

Multi-agent systems are also automata, although the term has become quite ge-
neric in recent years. MAS are generally endowed with some agency; various state 
variables and transition rules are introduced to lend agent-automata life-like quali-
ties, for example for use in Artificial Intelligence research (Ferber, 1999). In social 
science, agency is generally expressed with reference to decision-making and 
choice behavior (Kohler and Gumerman, 2001), cooperation and conflict (Epstein 
and Axtell, 1996), economic reasoning (Luna and Stefansson, 2000), etc. In other 
fields, agency is used to mimic insect (Bonabeau et al., 1999) and animal behavior 
(Meyer and Guillot, 1994), and to specify Internet bots (Leonard, 1997) and Web-
crawlers (Pallman, 1999). Agents pop up in all sorts of places, from Lord of the 
Rings films to Xbox games. In general social science contexts, agents are usually 
non-spatial in nature. This is not so in geographical contexts, where agency relates 
quite closely to the mobility of agents in a simulation. This is one of the distin-
guishing factors between CA and MAS in geographic research; agents may be de-
signed with the ability to move within a simulated space—and carry their state in-
formation and rules of interaction with them as they do so. CA, by contrast, are 
static in their lattice space; they may diffuse information to neighbors, but they 
cannot alter their position. The distinction is important, at least to geographers. 
We would like to argue, in fact, that the distinction is so important as to warrant a 
whole new class of automata—what we call Geographic Automata. 

5. Why we need geographic automata 

Considering my own needs as a model developer, I generally need my model to 
support some key components of the systems that I wish to simulate. Likely, my 
needs are quite similar to those of the reader. Of course, I deal mostly with human 
geographical systems, so my wish-list is understandably biased in that direction. 
Entities in the model generally need to be distinguishable in terms of the space in 
which they are situated (or bounded). A flexible expression of the spatial relation-
ships between entities is desirable. Generally, entities in my simulations have 
some form of mobility, and so I need to be able to track them as they wander 
around a simulated space, or as their occupation of that space alters. Similarly, I 
need to be able to describe their behavior, whether spatial or non-spatial. 

The trouble with the automata approaches that I outlined in the previous section 
is that none of them is capable of supporting this sort of functionality in a cohesive 
manner. CA are handicapped by their inability to simulate true movement. The ve-
locity of information transmission could be approximated in some fashion, but a 
cell will never be able to uproot and jump around its lattice. MAS can do all of 
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this, but much of the current MAS methodology underestimates the importance of 
space and movement behavior. As desirable as mobility methodology might be to 
a geographer such as myself, MAS have other shortcomings; agents cannot be 
fields, for example. 

Geography is all about the behavior and distribution of things in space, and dif-
ferent things in different spaces. When we throw time into that soup, we have to 
consider all of this in the context of space-time dynamics. Why not fall back on 
our geosimulation approach, infusing spatial properties into the aforementioned 
automata tools? We might, for example, adopt a fully automata-based view of 
geographic systems, fabricating systems, from the bottom up and using building 
blocks fashioned as geographic automata. Relying on notions such as emergence 
(Johnson, 2001) or network theory (Watts, 2003), we might relate these building 
blocks to each other as a Geographic Automata System.  

6. Geographic Automata Systems 

Based on our understanding of geographical systems, we can extend the automata 
idea with space-specific functionality to account for the general needs of geo-
graphical modelers. We have actually explored the suitability of the following ap-
proach for general urban modeling, at least, and it seems sufficient for most needs 
that we can consider (Torrens and Benenson, 2005). The usefulness of the ap-
proach for modeling urban growth will be demonstrated shortly, but first let us de-
fine what we mean by a Geographic Automata System. 

A Geographic Automata System retains all of the basic functionality of auto-
mata, CA, and MAS: 
• States 
• State transition rules 
• Neighborhoods 

 
To this mixture, we add some peculiarly geographic functionality: 

• A typology, describing automata types 
• Neighborhood transition rules 
• Dynamic location conventions 
• Movement rules 

 
The result is a unique class of automata, somewhere beyond CA and MAS, 

with a dash of Geographic Information Science. The former set of functionalities 
outlined above now hinge on the latter set—state, state transition rules, and 
neighborhoods are formulated on the basis of automata type, neighborhood transi-
tion rules, location conventions, and movement rules. As ever, all of these compo-
nents are dynamic with respect to time. In a simulation context, exploration with 
the Geographic Automata Systems then invokes qualitative and/or quantitative in-
vestigation of the influence of these components on system behavior; the ability of 
the framework to support representation of geographical systems; and specifica-
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tion of the spatio-temporal behavior of geographic entities in an artificial Geo-
graphic Automata System simulation environment. The Geographic Automata 
Systems idea expressed here is a framework for modeling, but it can be used to 
build models and software for spatial simulation. Thus far we have begun to con-
struct minimal, but wholly sufficient, simulations based on the framework 
(Benenson and Torrens, 2004b). In addition, Benenson and colleagues have used 
the framework as the basis for a library of urban simulation tools (Benenson et al., 
2004). Before describing one such modeling example in more detail, let us explain 
the concept in fuller detail. 

In the framework, we allow for typologies of Geographic Automata. In our own 
work thus far, we distinguish between fixed and non-fixed Geographic Automata 
(GA). Fixed GA are used to model entities that do not change their location over 
time (although their spatial extent may change in size—shrink or grow, for exam-
ple—or shape). In an urban context, such entities might be roads, land parcels, or 
parks. Considering the list of functionality outlined previously, fixed GA may 
succumb to the influence of state and neighborhood transition rules, but not those 
of motion. Non-fixed entities are those that have the ability to change their loca-
tion in space and time. Again, in an urban context, we might think of pedestrian 
walkers, migrating renters, or subway trains. The full range of rules may be ap-
plied to non-fixed GA; location conventions and movement rules are of obvious 
importance, but neighborhood rules take on a curious form when entities are mo-
bile with respect to other entities, and here the fixture of those GA becomes sig-
nificant. The movement of a car relative to other cars as opposed to that relative to 
a traffic light is one example you might consider. The distinction is equally impor-
tant when employing algorithms, mathematics, or databases in their representa-
tion. 

GA may also possess state descriptors and state transition rules, as with auto-
mata, CA, and MAS. Once again, these may be dynamic with respect to time and 
space. Their formulation in Geographic Automata Systems differs, however. State 
transition depends on input from fixed neighborhoods in the context of automata 
and CA. So, cells appear to magically mutate within a lattice. This is fine for de-
scribing phenomena such as local-scale urban decline, but less so for other scenar-
ios—migration is an obvious example. If we consider a model with fixed and non-
fixed GA, however, state transition falls under the additional influence of the spa-
tial behavior of other objects in the system, or even within the cell. 

Indeed, the addition of functionality to enable, determine, and describe move-
ment of GA within the system opens up all manner of possibilities for developing 
spatial models, and using them to test theories and simulate phenomena of interest. 
Movement, and its representation in a simulation context, is a popular research 
thread in fields peripheral to geography; the video game industry is one example 
that springs to mind, with an emphasis on movement choreography (Reynolds, 
1999). It seems obvious that geographical simulations should accommodate that 
sort of functionality, as well as adding unique geographical theory and method-
ologies relating to mobility, search behavior, way-finding, etc. Movement rules 
have thus been added to the framework. Indeed, as we will demonstrate later, they 
become a key ingredient of our urban growth models. 



126      Paul M. Torrens 

The introduction of functionality to support movement necessitates inclusion of 
components to track the location of entities and objects in simulated spaces. Con-
sidering a typology of geographic entities that is based on fixture, location con-
ventions should be amenable to supporting entities of fixed and non-fixed type, 
their stable and mobile locations, as well as facilitating evaluation of relationships 
between the two on the basis of those conventions. In the examples that we have 
developed thus far, we allow for two varieties of location convention. Direct loca-
tion is specified rather obviously in terms of the current location of an entity in the 
system, and this might relate to a coordinate point, additional height information, 
centroids, a network location, or a set of vectors bounding a polygonal coverage. 
Location by indirect means is somewhat more complicated, and we have formu-
lated this by means of pointers. An entity has its own location conventions, as well 
as an additional set of location primitives that express its location relative to other 
objects or entities. Two brothers might duplicate the same location when at home 
in their townhouse, but an indirect pointer will be employed to convey the exis-
tence of that relationship as they separate in space, for example when they go to 
different nightclubs on a Friday evening. 

This brings us to the issue of neighbors and neighborhood rules. Neighbor-
hoods feature in CA models, as described previously. Similarly, agents in MAS 
may have neighbors. In CA models, neighborhoods are usually static and symmet-
rical. They are not really suited to describing dynamic spatial relationships be-
tween objects and their variance in space and time. The neighbor concept in MAS 
is more flexible; flying or swimming Boids may have nearest neighbors for exam-
ple (Reynolds, 1987). However, geographers’ interest in neighborhoods is much 
broader, encompassing notions such as adjacency, connectivity, and proximity that 
are not always geometrical in form. A generalized framework for describing such 
concepts is needed. We allow for such functionality in the Geographic Automata 
System framework, by separating neighborhoods and neighborhood rules that 
govern the ways in which those neighborhoods might change in space in time, as 
Voronoi relations, social networks, leader-follower partnerships, etc. There may 
be instances in which these are non-spatial, or a mixture of spatial and non-spatial. 
Consider a household example. Neighbor relations could be expressed in terms of 
family ties: parent-to-child, sibling-to-sibling. As family members go about their 
business over the course of a day, the spatial relations between these people will 
change (or not; siblings may go to the same school), but the family tie remains. If 
there is a new birth in the family, the family tie will be altered, again non-
spatially. As children grow and leave for university, they are de-coupled from the 
household space and interaction may take on a new form (email, phone). If the 
family fissions, both spatial and non-spatial relations may change yet again, with 
parents divorcing and moving apart. The neighbor and neighborhood rules need to 
be flexible to accommodate these sorts of behaviors. 

Next, let us illustrate the use of these components in a unified manner, to build 
models of urban growth and to run simulations of suburban sprawl. 
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7. An application to simulating sprawl 

We have built the modeling framework to be discussed using a geosimulation ap-
proach, and on the basis of a GAS foundation. The model is designed to simulate 
urban growth. Under simulated conditions, city-systems evolve from initial seed 
settlement sites, going on to urbanize through compaction, polynucleation, infill, 
inner-city densification and decline, and peripheral suburban sprawl. We have de-
signed the model as an artificial laboratory to test ideas and hypotheses about 
sprawl in particular.  

A lengthy discussion about sprawl is somewhat beyond the general remit of this 
text; the reader should consult Torrens & Alberti (2000) for more substantial 
treatment of the topic. Put succinctly, sprawl refers to a phenomenon that is par-
ticularly prevalent (and popularly studied) in the United States. Sprawl is suburban 
growth, first and foremost, understood to extend peripherally around cities in 
swaths of development that are much lower in density than the core area of the 
city in question; it is also much more scattered in its spatial distribution.  

Sprawl has a number of empirical characteristics. It is also manifest with lots of 
softer, non-quantifiable, characteristics; consult the literature in architecture and 
urban design for examples (Calthorpe et al., 2001; Duany et al., 2000; Duany et 
al., 2001; Katz, 1993). A minimal set of descriptors of sprawl might well include 
measures of density (of population, employment, or some other activity); the func-
tionality of urban space in the city-system; spatial distribution or structure of the 
urban extent; and dynamic attributes that would allow all of these things to change 
in space and time. Moreover, these characteristics may be important at varying 
scales of observation or consideration. 

The potential causes of sprawl are numerous and hotly debated (Ewing, 1997; 
Gordon and Richardson, 1997a). In fact, evaluation of the veracity of debated fac-
tors might be one of the goals of a sprawl model. System growth is very important 
as a sprawl mechanism; it sets the metabolism of the city and sprawling cities are 
generally either fast-growing in absolute population totals, or fast-growing in the 
decentralization of that population to the city’s periphery (even if it means leaving 
a donut hole in the center of the city). The distribution of that growth is particu-
larly significant, and this is what distinguishes sprawl from general suburbaniza-
tion in most instances. The distribution of sprawl is low in density, scattered in na-
ture, rapid in its appetite for land, and is almost always manifest on the periphery 
of the main urban mass.  

Space and geography, then, are absolutely essential to consideration of sprawl. 
But representation of the spatial components of sprawl necessitates a uniquely 
spatial modeling approach. Not surprisingly, we would like to argue that sprawl is 
an ideal test-bed for geosimulation and GAS; similarly, geosimulation and GAS 
offer much potential for generating and testing ideas relating to sprawl. Let us try 
to demonstrate that with a modeling example. 
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8. Model description 

We have constructed an urban growth model, formulated on the basis of a Geo-
graphic Automata Systems engine, as mentioned, with components of the model 
formulated in that scheme: a typology of fixed and mobile geographic automata, 
each described in space and time by means of a set of state variables, state transi-
tion rules, geo-referencing conventions, movement rules (if mobile), neighbor 
conventions, and neighborhood rules. 

The typology delineates two types of geographic automata—fixed and mobile. 
Fixed GA correspond to landscape and infrastructure elements. The simulated 
space is characterized as a landscape, until developed into urban infrastructure by 
the other—mobile—type of GA in the model. Mobile GA serve as the agents of 
change in the simulated system. They are designed to mimic developers and set-
tlers, wandering the landscape with informed behaviors, converting it from non-
urban to urban uses, and depositing population as they proceed. In this way, then, 
fixed GA act as a container for mobile GA; the landscape supports settlement 
through urbanization. 

Fixed GA may also be designated as gateways. Essentially, gateways serve as 
an entry-point to incoming growth (population) to the simulated system. A priori, 
certain sites are designated as gateways in the simulated city, corresponding to the 
initial seed locations from which an urban system evolves. Gateways may also 
manifest over the course of a simulation run—during run-time—and this is used to 
denote the emergence of new centers of urbanization within the city-system as it 
evolves. Whereas the seed gateways are used as a proxy for exogenous in-
migration to the city-system, run-time gateways are used to generate endogenous 
growth (and decline) within the city. 

A set of state variables are used to introduce a minimal set of relevant charac-
teristics of the evolving urban system: whether or not a GA is a gateway, the de-
velopment condition of the simulated landscape, and the state of its settlement. 
Fixed GA units are endowed with variables to describe whether they are develop-
able or not; this allows for space to be delineated as functional (suitable for ur-
banization) or not. Similarly, those units are described with an additional variable 
to indicate whether they have been developed. The end result of urbanization in 
the model is settlement of a fixed GA with some volume of population; a popula-
tion count variable is thus introduced to denote the number of people residing on a 
given fixed GA unit. Because fixed GA are equal in size in the simulation, this 
may be interpreted as a population density state. 

Of course, all of these variables are dynamic with respect to space and time. 
Change takes place in the model through general state transition rules, as well as 
the movement activity of mobile GA units. One of the interesting features of em-
ploying a GAS-based approach to modeling urban growth is that much of the state 
transition functionality that appears in traditional CA-style urban growth models 
(Clarke and Gaydos, 1998; Engelen et al., 1995; White and Engelen, 2000; Xie, 
1994; Yeh and Li, 2000) can actually be handled through movement rules, thus 
avoiding the sort of methodology that would have cell states mutate magically 
within a lattice, rather than initiating as the result of agent-based activity within 



Geosimulation and its Application to Urban Growth Modeling      129 

them. Consequently, a handful of general state transition rules are employed. A 
dispersal function is used, to distribute population very locally between fixed de-
veloped GA units, within a small neighborhood radius. This neighborhood is 
specified in an eight-cell Moore configuration and the dispersal works by diffus-
ing a percentage of population within that neighborhood to a target cell. This dis-
persal actually works in two directions: growth is diffused between neighbors, but 
so too is decline. If the average population in the neighborhood is below the value 
in a target cell, the total in the reference cell will decline accordingly. In this way, 
then, phenomena such as urban blight and gentrification are handled, albeit in a 
proxy manner. 

A number of georeferencing conventions are used in the model, to situate im-
portant features in the model, such as seed gateways, and to track the movement of 
mobile GA as they propagate through the system. Georeferencing is performed by 
direct and indirect means. The actual coordinates of modeled entities within the 
simulated space are noted by fixed means, as (x,y) coordinates on a Cartesian 
plane with origin in the centroid of the simulated space. If a GA is fixed, these co-
ordinates will not change; if it is mobile, the coordinates will be updated to reflect 
shifts in their position. Indirect georeferencing is employed with respect to mobile 
GA and the seed gateways from which they originate. As a mobile GA moves 
through the simulated landscape, its direct location will change, but it retains a 
pointer to the seed gateway from which it originated in the system. This designa-
tion remains with the GA as long as it is present within the system. 

Movement rules constitute the real work-horse of the model. The rules are de-
signed to mimic proposed drivers of sprawl, as discussed in the literature. Specifi-
cally, we use the geographic factors understood to be responsible for sprawl in 
American cities as inspiration for the formulation of the movement regimes. Thus, 
we have specified a variety of forms of movement for the modeled developer-
settler GA. Growth enters the system either from exogenous or endogenous 
sources, and that growth is distributed spatially over the urbanizing landscape us-
ing mobile GA (Figure 2).  

Compact development regimes are mimicked by immediate and nearby move-
ment rules that see mobile GA develop fixed GA in small eight-cell and 24-cell 
neighborhoods of influence. The compact rules correspond to the sorts of devel-
opment that might take place early in the evolution of a city-system, when space is 
considered with relatively less premium than may be the case at a later stage in the 
city’s growth. The compact rules also mimic conventional New Urbanist ideas 
about denser forms of development (Katz, 1993). The compact movement rules 
lead to relatively small clusters of dense settlement. 
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Fig. 2. . A conceptual diagram of the urban growth model engine. 

 
More linear forms of development, such as that which might flourish around 

transport corridors or flanking arterial highways, are modeled using two other 
movement rules: an irregular and road-like movement regime. The irregular func-
tion is used to simulate the sorts of development features that might occur when 
development is constrained to an irregular linear process due to natural or political 
boundaries. This rule leads to a dendritic form of development, much like that 
generated by diffusion-limited aggregation (Batty et al., 1989) or random walks 
(Batty and Longley, 1994). The road-like movement rule is used to grow roads in 
a simulation. Rather than having roads pop-up out of the ether, the rule is formu-
lated in a chained node and link manner, whereby a developing GA moves over 
the landscape, laying down nodes to be connected; these nodes are then linked by 
linear strips of development, thereby mimicking road-like urbanization. This is 
particularly useful in simulating ribbon-sprawl, i.e., sprawl that tends to feature in 
linear swaths buffering major roads on the periphery of cities. 
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Fragmentation is a major feature of conventional suburbanization; as mentioned 
previously the notion of scatter is crucial to sprawl. Scattered development on the 
periphery of cities, at lower-than-average densities of settlement, is now common-
place in many American cities. It is largely a by-product of speculative land de-
velopment (Bahl, 1968), often in areas that were previously devoted to agricultural 
use. In a sense, the formation of edge cities (Garreau, 1992) is also a process of 
scattering, albeit on a larger scale of consideration. Scattered development is mim-
icked by means of a leapfrog movement rule, whereby a mobile developer GA can 
skip ahead of the main urban mass and settle sites outside of that periphery. 

The movement rules may also be combined, so that a leapfrog movement may 
be followed by a road-like movement or a compact movement, or other such com-
binations. 

Thus far, we have covered specification of the model as a Geographic Auto-
mata System, referring to the typology of entities in the model, the set of state 
variables used, state transition rules, georeferencing conventions, and movement 
rules. The final set of components that we need to describe relate to spatial rela-
tionships in the model: neighborhoods and neighborhood rules. As mentioned with 
respect to the compact movement rules, variable neighborhoods are employed in 
the model and these allow for different areas of influence for development and set-
tlement to be introduced. In addition, action-at-a-distance is also supported, as in 
the case of the road-like and leapfrog movement rules. In this way, then, the influ-
ence of a given GA may extend beyond the neighborhood filter. 

Neighborhood rules are employed in a rather simple fashion. The actual shape 
of a neighborhood does not vary as the simulation evolves, mobile GA just choose 
to employ varying sizes of neighborhood, and this choice is tied quite simply to 
the movement rule that they are ordered to employ in a given place at a given 
time. 

This brings us to broader issues of time and dynamics, and their use in the 
model. Time is discrete in the model; it moves in packets or bundles of change. 
These bundles are characterized as a simulated year in the simulation we will pre-
sent shortly. In this sense, time is event-driven. Each packet of change (a year) 
may involve hundreds of individual transitions and movements, and these move-
ments will proceed based on their own internal clocks. A road-like movement rule 
will take up many cycles of the CPU’s clock, whereas the in-migration of growth 
to a gateway may take up only a handful of cycles. The volume of activity that oc-
cupies a single temporal packet will understandably grow as the simulated city 
fills with more and more people—more and more agents of change. But, by en-
capsulating these dynamics within events time will appear to flow quite organi-
cally within the simulation. There is also some theoretical justification to this ap-
proach to dynamics in the model. Different processes have different cycles and we 
wished to accommodate that functionality. The mechanisms designed to diffuse 
growth and decline between fixed GA are slower (in event time) than those em-
ployed by movement rules; the lifecycle of development and settlement events is 
shorter than that of neighborhood transition through gentrification and decline. 

Finally, the model works in a constrained fashion. The state variables for de-
velopable or not-developable conditions allow for the simulated space to be de-
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vised as functional (open to development) or non-functional (closed to develop-
ment, for example, if the area is a large water mass). Automata models are known 
to be very sensitive to initial parameterization, and urban growth CA are quite 
sensitive to the specification of seed sites. Seed gateways are thus introduced with 
some a priori understanding of where the model developer would like the city-
system to start growing, although other rival sites may emerge over the course of a 
simulation run. The general metabolism of a simulation is constrained by use of 
these seed gateways; at each time-step in a simulation run, a volume of growth is 
metered to the simulation. Although the actual spatial distribution of that growth is 
left to the model, the general rate of exogenously-derived growth can be con-
strained. Similarly, the rate of endogenous growth can be constrained. In some 
simulations, we have tailored the seed conditions and growth rates to known con-
ditions and are able to generate realistic urban evolution and patterns of growth for 
real-world city-systems (Torrens, 2002b); moreover, quantitative and structural 
measurements confirm that the simulated conditions match those present on the 
ground, although that discussion is beyond the main thread of this chapter. 

9. Simulating urban growth 

We have just described how the model is formulated as a Geographic Automata 
System, and the functionality that framework affords is particularly useful in mod-
eling urban growth. We will now demonstrate how the model can be used to build 
realistic simulations of urban growth regimes in artificial cities. These simulations 
allow for various ideas about the factors responsible for sprawl to be tested in an 
artificial and controlled computational environment. In particular, we can test the 
ways in which a city-system might evolve by conventional means (sprawl, in this 
case), and by smart growth mechanisms in which growth is managed in some sus-
tainable form. This actually echoes a hot debate in the literature at the moment, 
pertaining to questions of whether sprawl or smart growth is desirable, feasible, 
cost-effective, and socially just (see Gordon and Richardson, 1997b). The purpose 
of this chapter is to introduce the idea of geosimulation, Geographic Automata 
Systems as a framework for geosimulation, and to demonstrate how they might be 
used to build urban growth models. The simulation experiments described here 
were designed to test specific ideas about conventional urban growth in American 
cities, and much of that discussion falls outside of the relevance of this chapter. 
Nonetheless, some brief description of the simulations may serve to emphasize the 
points that we are trying to make in this discussion. We will introduce two simula-
tions based on the model described in the last section. One relates to sprawl; the 
other relates to smart growth.  

The sprawl simulation is designed to mimic the general evolution of a contem-
porary city-system in the United States. Five initial gateways seeds are introduced 
into the model, with differing growth rates. One seed, in the center of the simu-
lated space, is chosen to dominate a priori, and the assignment of growth to it is 
established to reflect this. 75% of the way through a simulation run, the supply of 
external growth to all sites, save this dominant city, is halted and growth in those 



Geosimulation and its Application to Urban Growth Modeling      133 

areas proceeds by endogenous means alone. (Growth rates are thus treated hetero-
geneously across the city-system.) Theoretical justification for this is as follows. 
The dominant city is afforded a historical advantage from the outset of the simula-
tion; it was an initial settlement site and has inertia, geographically, and path de-
pendence in terms of system dynamics. As the city-system evolves, that site flour-
ishes and gains a competitive advantage that 75% of the way through the 
simulation (when its urban extent reaches the hinterlands of competing sites) be-
gins to draw growth away from its competitors. The city-system evolves to a fa-
miliar sprawling pattern, with road-influenced fingers of ribbon sprawl and a sea 
of low-density and fragmented urbanization on the periphery. Urban decline is 
evident in the core of the city (Figure 3). 

 
a) 

 

 

b) 

 

 

Fig. 3. The results of a sprawl-based (a) and a smart growth (b) simulation run (darker 
areas refer to low population density; lighter areas house high densities of population). 

 
A second simulation is formulated on a smart growth regime, whereby devel-

opment is encouraged in smaller compact clusters. A dominant city is established 
a priori, as before. However, initial peripheral sites gain a competitive advantage 
outside of the main urban mass, and instead of sprawling become relatively dense 
in their own right. When the supply of exogenous growth is cut, these settlements 
actually survive. The result is a polycentric spatial structure to the city-system. 
Sprawl still predominates on the periphery, but it is bound within edge cities that 
constitute well-established polycentric cores. 

These simulations demonstrate the suitability of the geosimulation approach 
and the Geographic Automata Systems framework. In related work, we have also 
begun to use this model to explore ideas about the dynamic formation of sprawl as 
a generative and inherently spatial process. We have also considered the phe-
nomenon of sprawl at a more micro-scale, and have built a GAS-based model of 
community dynamics within one single GA “cell” of these simulations (Torrens, 
2001), looking at issues of residential mobility, community demographics, and 
socio-spatial segregation. 
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10. Conclusions 

This chapter has introduced a few new research ideas in the field of urban simula-
tion, hopefully not too generally for the reader to grasp fully. We have proposed 
geosimulation as a new and particularly useful approach to spatial simulation. 
Work in the area of geosimulation and urban analysis is really beginning to gather 
steam; Itzhak Benenson and I have edited a journal’s double special issue devoted 
to the topic (Benenson and Torrens, 2004d). Much of the work discussed in those 
pages relies on automata tools. In many instances, geosimulation work might 
benefit from more explicitly spatial simulation tools; the need in geography work 
is obvious. 

We have developed a new framework for geosimulation modeling, focused on 
automata tools, but with patently spatial (and Geographic Information Science) 
appeal and functionality—Geographic Automata Systems. We believe the frame-
work to be very useful for modeling urban systems. 

One such example is demonstrated here, focusing on urban growth modeling 
and simulation of scenarios relating to suburban sprawl in American cities. We 
hope that the framework will be found to be more extensible across a range of 
geographic examples, relating urban analysis and other areas of geography. 
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