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Abstract 
A new approach is introduced, whereby patently spatial simulation 
methodology is applied to simulating discrete, dynamic, and action-oriented 
spatial systems, combining cellular automata and multi-agent systems in a 
spatial context. In this paper, we propose a minimal prototype for 
integrating GIS and geosimulation into what we term Geographic Automata 
Systems (GAS), the latter sufficient for the formalization of the majority of 
abstract and real-world high-resolution models. A software environment for 
urban simulation, which directly implements GAS formalism, is briefly 
described and an example of its application is provided.  

 

1. Introduction 
New forms of simulation have come into popular use in geography and social science in 
recent years, supported by an array of advances both in the geographical sciences and in 
fields outside geography. These models and simulations can be characterized by a 
distinctly innovative approach to modeling—the geosimulation approach. Geosimulation 
is concerned with automata-based methodologies for simulating collectives of discrete, 
dynamic, and action-oriented spatial objects, combining cellular automata and multi-
agent systems in a spatial context (Benenson and Torrens 2004; Benenson and Torrens 
2004). In geosimulation-style models, urban phenomena as a whole are considered as 
the outcome of the collective dynamics of multiple animate and inanimate urban objects. 
 
Geosimulation models are more commonly based on cellular automata (CA) and multi-
agent systems (MAS). Applied in isolation, CA and MAS approaches have been used to 
simulate a wide variety of urban phenomena and there is a natural imperative to combine 
these frameworks for exploratory and applied simulation in urban geography (Torrens 
2004, 2003, 2002). Nevertheless, the direct amalgamation of CA and MAS eventually 
suffers from awkward compromises, a function of the necessity for CA partition of 
urban space into cells. Given cell partition, no matter whether units are identical or vary 
in size and shape, cells are either granted some degree of ‘agency’ and are simply 
reinterpreted as artificial agents (Box 2001) or MAS are imposed on top of CA and 
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simulated agents respond to averaged cell conditions (Benenson 1998; Polhill, Gotts, 
and Law 2001). These frameworks are certainly useful, especially in studying abstract 
models, but in a real-world milieu are a function of the limitations of the available tools 
rather than the structure of real urban systems or the laws of their behavior (see 
Agarwal, this volume, for a discussion of the limitations of agent-based models). 
 
The dataware for the real-world simulations is usually provided by Geographic 
Information Systems (GIS), which have an integral role in the development of 
geosimulation models. Dramatic changes in geographic databases during the last 
decades of the Twentieth Century have ushered in a new wave of urban modeling 
(Benenson, Omer, and Hatna 2002; Benenson and Omer 2003). Automated procedures 
for data collection—remote sensing by spectrometer, aerial photography, scanners, 
video, etc.—have provided new information sources at fine resolutions, both spatial and 
temporal (Torrens 2004). New methodologies for manipulating and interpreting spatial 
data developed by geographic information science and implemented in GIS have created 
added-value for these data. Information collection is much more pervasive than before 
(Brown and Duguid 2000), and high-resolution databases for urban land-use, population, 
real estate, and transport are now more widespread (Benenson and Omer 2003). Cellular 
spaces populated with agents are too limiting an interface between GIS and 
geosimulation, and there remains much potential for fusing GIS and geosimulation into 
full-blown, symbiotic simulation systems. In this paper, we propose a minimal but 
sufficient framework for integrating GIS, CA, and MAS into what we term Geographic 
Automata Systems. This approach is intended to be ‘down to earth’, and we will 
demonstrate the implementation of the approach, in this chapter, with reference to GAS-
based software developed at the Environment Simulation Laboratory of the Porter 
School of Environmental Studies at the University of Tel Aviv—the Object-Based 
Environment for Urban Simulations (OBEUS). This chapter builds on discussions of 
urban geocomputation (Torrens and O'Sullivan 2000; Benenson and Omer 2000) and 
software environments for geocomputational research in urban contexts (Benenson, 
Aronovich, and Noam 2001), which were partially presented at previous 
Geocomputation meetings. 

2. The basic automata framework 
Put very simply, an automaton is a processing mechanism; a discrete entity, which has 
some form of input and internal states. It changes states over time according to a set of 
rules that take information from an automaton’s own state and various inputs from 
outside the automaton to determine a new state in a subsequent time step. Formally, an 
automaton, A, can be represented by means of a set of states S and a set of transition 
rules T. 
 

A ~ (S, T)              (1) 
 

Transition rules define an automaton’s state, St+1, at time step t + 1 depending on its 
state, St (St, St+1 ∈ S), and input, It, at time step t: 
 

T: (St, It)  St + 1            (2) 
 

Automata are discrete with respect to time and have the ability to change according to 
predetermined rules based on internal (S) and external (I) information.  
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In terms of urban applications, automata lend themselves to specification as city 
simulations with myriad states and transition rules. However, to make sense, an 
individual automaton should be as simple as possible in terms of states, transition rules, 
and internal information (Torrens and O'Sullivan 2001). Simplicity is a characteristic of 
the most popular automata tools in urban geography, Cellular Automata —a system of 
spatially located and inter-connected automata. 
 
2.1. From general to cellular automata 
CA are arrangements of individual automata in a partitioned space, where each unit 
(cell) is considered as an automaton A, for which input information I necessary for the 
application of transition rules T is drawn from A’s neighborhood R. In urban 
applications, cells are most commonly used to represent land units with state 
representing possible land-uses (White, Engelen, and Uljee 1997). Usually, CA lattices 
are partitioned as a regular square or hexagonal grid. We can specify (1) – (2) to 
introduce an automaton, A, belonging to a CA lattice as follows:  
 

A ~ (S, T, R)              (3) 
 
where R denotes automata neighboring A.  
 
Although there are direct analogies between land parcels and cells on the one hand and 
land-uses and cell states on the other, there were no geographical applications of CA 
models before the 1990s. There were a few examples published in the 1970s (Albin 
1975; Chapin and Weiss 1968; Nakajima 1977; Tobler 1970, 1979), but the field was 
largely ignored in terms of research until interest was revived in the 1980s (Phipps 1989; 
Couclelis 1985). Beginning in the 1990s, CA modeling became a popular research 
activity in geography, with pioneering applications in urban geography (Batty, 
Couclelis, and Eichen 1997; O'Sullivan and Torrens 2000). 
 
In terms of space, neighborhood relationships are important for rendering CA as spatial 
systems. In basic CA, neighborhoods have identical form for each automaton, e.g., 
Moore or von Neumann (Figure 1a). In the last decade it became clear, however, that 
reliance on regular partitions of space is largely superficial in urban contexts (Torrens 
and O'Sullivan 2001). Consequently, CA have been implemented on irregular networks 
(Figure 1b), or partitions given by GIS-based coverage of land parcels or Voronoi 
tessellations (Figure 1c) (Shi and Pang 2000; Semboloni 2000; O'Sullivan 2001; 
Benenson, Omer, and Hatna 2002). An assortment of definitions of neighborhoods, 
based on connectivity, adjacency, or distance can be applied to these generalized CA, 
where the form of the neighborhood and the number of neighbors varies between 
automata. 
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Figure 1a. Automata defined on a two-dimensional regular lattice, with von Neumann 

and Moore neighborhoods represented. 
 
 

 
Figure 1b. Automata defined on a two-dimensional network. 

 
 

 
 

Figure 1c. Automata defined on a Voronoi partition of two-dimensional urban space, 
based on property coverage. 
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There is no conceptual difference between irregular and regular CA; yet, an inherent 
weakness of the CA is the inability of automata cells to move within the lattice in which 
they reside. Despite repeated attempts to mimic units’ mobility (Portugali, Benenson, 
and Omer 1994; Schofisch and Hadeler 1996; Wahle et al. 2001), the genuine inability 
to allow for automata movement in the CA framework catalyzed geographers’ recent 
interest in MAS. This tendency is especially strong in urban geography, where the CA 
framework is regarded as insufficient in dealing with mobile objects such as pedestrians 
(Torrens 2004), migrating households, or relocating firms.  
 
2.2. From general to agent automata 
Fundamentally, agents are automata and, thus, incorporate all of the features of basic 
automata that have just been discussed. However, there are some important distinctions 
between general and agent automata, largely owing to the fact that the latter are 
generally interpreted for representation of autonomous decision-makers (Kohler 2000; 
Epstein 1999). In urban studies, the states S of agent automata in MAS are usually 
designed to represent socioeconomic characteristics; transition rules are formulated as 
rules of agent decision-making, and correspond to human-like behaviors.  
 
In the social sciences outside geography, work in agent-based simulation is usually non-
spatial; many of the decisions and behaviors of geographic agents are, however, spatial 
in nature. Consequently, the states S of geographic MAS should include agents’ 
location, and transition rules T should reflect, thus, the ability of agents to relocate. 
 
Human-based interpretations of MAS have their foundation in the work of Schelling and 
Sakoda (Sakoda 1971; Schelling 1969, 1971, 1974, 1978) and despite initial interest 
(Albin 1975) the field remained relatively quiet for two decades after that. Just as with 
CA, the tool began to feature prominently in the geographical literature only in the mid-
1990s (Portugali, Benenson, and Omer 1997; Sanders et al. 1997; Benenson 1999; 
Dijkstra, Timmermans, and Jessurun 2000). Until recently, the main thrust of MAS 
research in geography involved populating regular CA with agents of one or several 
kinds, which could diffuse between CA cells. Often, it is assumed that agents’ migration 
behavior depends on the properties of neighboring cells and neighbors (Portugali 2000; 
Epstein and Axtell 1996). Very recently, agent-based models have been designed, which 
locate agents in relation to real-world geographic features, such as houses or roads, the 
latter stored as GIS layers (Benenson, Omer, and Hatna 2002) or landscape units—
pathways and view points (Gimblett 2002).  
 
Despite the widely acknowledged suitability of automata tools for geographic modeling 
(Gimblett 2002), there has been relatively little exploration into addressing these 
limitations and developing patently spatial automata tools for urban simulation. In the 
framework described in this paper, spatial abilities are treated with paramount 
importance and we define a class of automata that is capable of supporting explicit 
expression of processes, as geography comprehends them. In what follows, we aim at 
formulating a minimal framework and, thus, formulate it on the basis of an agent as an 
autonomous mobile object that reacts to the environmental information by changing its 
state and location. In terms of MAS, these agents are called weak agents and reactive 
agents (Woolridge and Jennings 1995), and we assume that they are sufficient for the 
vast majority of high-resolution geographic applications. 
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2.3. What geography needs from automata systems 
Focusing on space, we might identify three internal geographic mechanisms that are 
essential to an urban automata system: 
 
• A typology of entities regarding their use of space in which they are situated; 
• The spatial relationships between entities; 
• The processes governing the changes of their location in space. 
 
Simulating spatial systems, then, involves explicit formulation of these three 
components and neither CA nor MAS fully provide the necessary framework. The 
geography of the CA framework is problematic, for example, for urban simulation 
because CA are incapable of representing autonomously mobile entities. At the same 
time, MAS are weak as a single tool because of common underestimation of the 
importance of space and movement behavior. 
 
It is evident, then, that there is a need for uniting CA and MAS formalisms in such a 
way as to directly reflect a geographic and object-based view of urban systems. The 
GAS framework that we propose attempts to satisfy that demand.   
 
2.4. An idea: urban object ≡ Geographic Automaton 
As a spatial science, geography concerns itself with the behavior and distribution of 
objects in space. In urban geography, these are urban agents—householders, pedestrians, 
vehicles—and urban features—land parcels, shops, roads, sidewalks, etc. In dynamic 
spatial systems, all these objects change their properties and/or location; the goal of a 
geographic model is to simulate these activities and their consequences, often at multiple 
scales.  
 
In developing Geographic Automata Systems, our aim is to infuse spatial properties into 
automata tools and adopt an automata-based view of urban systems. Objects are 
conceptualized as geographic automata, with focus on their spatial properties and 
behaviors. Under this framework, a city system can be modeled as an ensemble of 
geographic automata, i.e. a Geographic Automata System.  

3.  Formal definition of Geographic Automata Systems 
Geographic Automata Systems consist of interacting geographic automata of various 
types. In general, automata are characterized by states S, description of their input I, and 
transition rules T. In the case of geographic automata, we re-interpret and extend these 
components to enable the explicit consideration of space and spatial behavior. 
 
Specification of state set S:  
• In addition to non-spatial states, geographic automata are also characterized by 

their locations.  
• Instead of the fixed location of CA automata, we introduce a set of geo-

referencing rules for situating geographic automata in space.  
 
Specification of input information I: 
• Instead of relying on fixed neighborhood patterns that are incapable of being 

varied in space or time, we define neighborhood relations that can change in 
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time and determine the automata providing input information for a given 
automaton.  

• Neighborhood relations can thus change; these changes are governed by 
neighborhood rules. 

 
Specification of transition rules T: 
• State transition rules specify the changes of non-spatial states. 
• The ability to change location is provided by a set of movement rules that allow 

for navigation of geographic automata in their simulated environments. 
 
Based on these specifications, we can formulate a minimal, yet adequate, framework for 
geographic modeling—or geosimulation. 
 
Let us use K to denote a set of types of automata; following this we will feature each of 
the previously-mentioned properties and rules that determine the dynamics of those 
automata in space. Essentially, we are constructing a system of geographic automata 
from the bottom-up. 
 
The automata basis of the system is captured by a set of states S, associated with the 
GAS, (consisting of subsets of states Sk of automata of each type k∈K) and a set of state 
transition rules TS, used to determine how automata states should change over time.  
 
According to general definition (1) – (2), state transitions and changes in location for 
geographic automata depend on automata themselves and on input (I), given by the 
states of neighbors. To specify the input information we use R to denote the neighbors 
of the automata and NR to specify the neighborhood transition rules that govern how 
automata relate to the other automata in their vicinity. 
 
The spatial nature of the geographic automata is encapsulated by information on 
automata location. Let us denote this with L, the geo-referencing conventions employed 
to locate automata in the system, and ML, the movement rules, governing changes in 
their location.  
 
 
Altogether, a GAS, G, may be thus defined as consisting of several components: 
 

G ~ <K, S, TS, R, NR, L, ML> (4) 
 
Let the state of geographic automaton G at time t be St, located at Lt, and the external 
input, It, be defined by its neighbors Rt. The state transition, movement, and 
neighborhood rules—TS, ML, and NR—define state, location and input information  of a 
given automaton G at time t + 1 as: 
 

TS: (St, Lt, Rt)  St + 1 

 
NR: (St, Lt, Rt)  Rt + 1   (5) 
 
ML: (St, Lt, Rt)  Lt + 1       
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Exploration with GAS then becomes an issue of qualitative and quantitative 
investigation of the spatial and temporal behavior of G, given all of the components 
defined above. In this way, GAS models offer a framework for considering the spatially 
enabled interactive behavior of elementary geographic objects in a system. 
 
3.1. Tight-coupling between GAS and vector GIS 
Many questions arise when applying the abstract framework mentioned above  to 
modeling specific geographic systems. Geographic automata of different types can 
follow different topologies. How might we incorporate that into models: let 
householders react to their neighbors in the adjacent houses (irregular tessellation); 
drivers to cars ahead, behind, and on their sides (point events on the network); customers 
to shops, which can be far away (graphs)? How could automata represent continuous 
fields, if ever? How can theoretical ideas relating to spatial mobility—way-finding, 
spatial cognition, action-at-a-distance, etc.—be incorporated into the behavioral rules of 
the real-world mobile agents or immobile features and further translated into automation 
rules? How can the global patterns reflecting self-organization of non-elementary urban 
entities be recognized and validated if generated in simulations? Answering these 
questions requires a tight-coupling between GIS and automata-based models. 
 
As a first step, we could rely on vector GIS. Indeed, vector GIS as a special kind of 
Database Management System (DBMS). Indeed, vector GIS may provide much support 
for GAS models. First and foremost, vector GIS can be used to store and retrieve the 
location and states of spatial objects and to register spatial actions. The next step toward 
fusion of GIS and geosimulation exploits an object-based view of urban reality. Indeed, 
both GAS and vector GIS are object-based in their design; both deal with discrete spatial 
objects, which customarily represent the real world at “microscopic” scales. A 
geosimulation approach considers the city as a dynamic collective of spatially located  
objects. Vector GIS deals mostly with static objects and employs an entity-relationship 
model (ERM) for their representation. In our approaches detailed here, we merge GAS 
and vector GIS functionality by implementing GAS as a specialized object-oriented 
database that manages geographic automata. Automata of a certain type are interpreted 
as a class, states and location as class properties; and GAS state transition, movement 
and neighborhood transition rules of automata of different types are thus reformulated as 
methods of corresponding automata classes. Let us specify components of GAS 
definition (4) – (5). 
 
Geographic automata types, K 
At an abstract level, we distinguish between fixed and non-fixed geographic automata. 
Fixed geographic automata represent objects that do not change their location over time 
and, thus, have close analogies with CA cells. In the context of urban systems, these are 
objects such as road links, building footprints, parks, etc. Fixed geographic automata 
may be subject to state and neighborhood transition rules TS and NR, but not of rules of 
motion, ML.  
 
Non-fixed geographic automata symbolize entities that change their location over time, 
for example: pedestrians, vehicles, and households. The full range of rules for GAS can 
be applied to non-fixed geographic automata. 
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Geographic automata of either fixed or non-fixed type evidently correspond to vector 
GIS features; normally the automata of a given type correspond to the features of a 
certain layer of vector GIS. 
 
Geographic automata states and state transition rules, S and TS 
State transition rules TS are based on geographic automata of all types from K. In 
contrast to CA, the states S of urban fixed infrastructure objects depend on the 
neighboring objects of the infrastructure, but are also driven by non-fixed geographic 
automata—agents—that may be responsible for governing object states such as land-
use, land value, etc. In this way, urban objects do not simply mutate like bacteria 
(O'Sullivan and Torrens 2000); rather, state transition is governed by other objects, the 
latter crucial for simulating human-driven urban systems, in which people are affected 
by their environments and also change them. 
 
Interpreted in GIS terms, automaton states are attribute values of a corresponding GIS 
feature, while state transition rules exploit attributes of GIS features that are in spatial 
and non-spatial relationships with a given automaton. 
Geo-referencing conventions, L and movement rules ML 
Geo-referencing conventions are crucial for coupling GAS and GIS. On the one hand, 
they should be sufficiently flexible to enable translation of geographic perspectives on 
locating real world objects, both fixed and non-fixed; on the other, they should satisfy 
limitations of entity-relationship models, in order to be convenient for GIS management.  
 
The GAS framework resolves these limitations by introducing two forms of geo-
referencing—direct and by pointing. Direct methods of geo-referencing follow a vector 
GIS approach for representing reality, using coordinate lists. Such a list indicates all 
spatial details necessary to represent an object—automata boundaries, centroids, nodes’ 
location, etc. Fixed geographic automata are usually located by means of direct geo-
referencing. The details of the particular rules employed depend on the automata used in 
a modeling exercise. For typical urban objects such as buildings or street segments, 2D 
footprint polygons or 3D prisms may be used. 
  
Non-fixed geographic automata may move; updating position coordinates might cause 
difficulties, which, when the automata are numerous and their shape is complex, are 
irresolvable in the framework of an entity-relationship model. We address these 
difficulties with a second method of geo-referencing—by pointing to other automata 
(Figure 2). 
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Figure 2. Direct and indirect geo-referencing of fixed and non-fixed GA 

 
Let us consider a typical example. In the case of property dynamics, householders can be 
geo-referenced by address. Landlords provide a more complex case: they can be geo-
referenced by pointing to the properties that they own. Indirect referencing can also be 
used for fixed geographic automata, e.g., for apartments in a house (Torrens 2001). 
Referencing by pointing is dynamic-enabled both in space and in time and compatible 
with the ERM database model. 
 
GAS-based research into different formulations of ML offers great potential for 
geographers. Realistic rules, ML, for encoding automata movement, based on repel-
attract-synchronize interactions between close neighbors, are being developed, for 
example, in Animat research (Meyer et al. 2000) and in the gaming industry (Reynolds 
1999). There is much opportunity for geographers to contribute to this line of research. 
Traditionally, attention has focused on the generation of realistic choreographies for 
automata, particularly in traffic models, through the specification of rules for collision 
avoidance, obstacle negotiation, lane-changing, flocking, behavior at junctions, etc. 
(Torrens 2004). However, there remain many relatively neglected areas of inquiry: 
spatial cognition, migration, way finding, navigation, etc. 
 
Neighbors and neighborhood rules, R and NR 
The set of neighbors of automata, R, is necessary for determining input information I. In 
contrast to the static and symmetrical neighborhoods usually employed in CA models 
(Figure 1a), spatial relationships between geographic automata can vary in space and 
time, and, thus, rules for determining neighborhood relationships NR is necessary. 
Neighborhood rules for fixed geographic objects are relatively easy to define (simply 
because the objects are static in space). There are a variety of geographical ways in 
which neighborhood rules can be expressed for them—via adjacency of units in regular 
or irregular tessellations, connectivity of network nodes, proximity, etc., (Figure 1b, 1c), 
all fit naturally in the context of GIS operations. Spatial notions related to the 
incorporation of human-like automata into GAS, such as accessibility, visibility, and 
mental maps can be formally encoded as NR rules. 
 
Non-fixed geographic automata pose more of a challenge when specifying neighborhood 
rules, because the objects—and hence their neighborhood relations—are dynamic in 
space and time. It can be done straightforwardly, via distance and nearest-neighbor 
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relations, as used in Boids models (Reynolds 1987), but as movement rules ML. This 
can become very heavy computationally when complex definition of, say, visibility or 
accessibility is involved. In this case it is more appropriate to base neighborhood rules 
on indirect location, as defined in previous sections, and consider two indirectly located 
automata as neighbors when the automata they point to are neighbors.  
 
For example, two householder agents can be established as neighbors by assessing the 
neighborhood relationship between the houses in which they reside. Even when these 
agents are physically separated in the simulation—when they go shopping or go to work, 
for example—they remain ‘neighbors’ by virtue of the (fixed) relationship between their 
properties. 
 
3.2. Temporal dimension of GAS 
A methodological base composed of fixed and non-fixed objects and direct and by-
pointing locating implies specification of Geographic Automata Systems within GIS. 
However, the dynamic nature of GAS also implicates temporal dimensions of GIS 
databases, and, thus entails its own limitations. Given these considerations, transition 
rules TS, ML, and NR, should be defined in a way that avoids conflicts when geographic 
automata are created or destroyed and their states, locations, or neighborhood relations 
are updated.  
 
According to (5), a triplet of transition rules determines the states S, locations L and 
neighbors R of automata at time t + 1 based on their values at time t. It is well known 
that different interpretations of the ‘hidden’—time—variable in a discrete system can 
critically influence  resulting dynamics of the model (Liu and Andersson 2004). There 
are several ways to implement time in a dynamic system. On the one hand, we consider 
time as governed by an external clock, which commands simultaneous application of 
rules (5) to each automaton and at each tick of the clock. On the other hand, each 
automaton can have its own internal clock and, thus, the units of time in (5) can have 
different meaning for different automata. Formally, these approaches are expressed as 
Synchronous or Asynchronous modes of updating of automata states and location. 
System dynamics  depend strongly on the details of the mode employed (Liu and 
Andersson 2004; Berec 2002), and the spatial aspects of the problem are studied in 
temporal GIS (Peuquet 2002; Miller 1999). Tight-coupling between GAS and GIS might 
thus demand further development of temporal GIS. 
 
3.3. GAS and raster GIS 
Conceptually, GAS do not fit to modeling dynamics of continuous fields, as, say, 
erosion processes, or pollution transport. Nonetheless, it is formally easy to interpret 
raster GIS cells as geographic automata, if the resolution is established a priori. It is also 
worth noting that in the majority of situations the sources and recipients of continuously 
distributed characteristics are geographic automata. One can think about further 
coupling between GAS and continuous models, but such an extension is merely beyond 
the minimal framework we discuss. 

4. The software implementation of GAS  
A software implementation of GAS for urban modeling—Object-Based Environment for 
Urban Simulation (OBEUS)—is currently in development at the Environment 
Simulation Laboratory of the University of Tel Aviv (Benenson, Aronovich, and Noam 
2001, 2004). Recently, OBEUS was modified to include all the basic characteristics of 
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GAS, and that was intentionally done in a minimal possible manner. Based on recent 
OBEUS experience, we specify—below—the main components that are necessary to 
implement the GAS approach as a software environment. The shareware version of 
OBEUS is still in development and is planned for distribution in April 2004 (see 
http://eslab.tau.ac.il for updates). The GAS framework is not software- or language-
specific, however, and applications have been developed in different environments 
(Torrens 2003). 
 
4.1. Abstract classes of OBEUS 
The basic components of GAS are defined in OBEUS with respect to automata types k 
∈ K, its states Sk, location L, and neighborhood relations R to other objects. These are 
implemented by means of the two-level structure of abstract root classes presented, 
partially, in Figure 3: 
 
At the top level we define three abstract classes: Population contains information 
regarding the population of objects of given type k as a whole; GeoAutomata acts  as a 
container for geographic automata of specific type; GeoRelationship facilitates 
specification of (spatial, but not necessarily) relationships between geographic automata. 
This functionality is available regardless of the degree of neighborhood and other 
relationships between automata, whether they are one-to-one, one-to-many, or many-to-
many.  
 
The location information for geographic automata essentially depends on whether the 
object we consider is fixed or non-fixed. This dichotomy is handled using abstract 
classes, Estate and Agent, which inherit GeoAutomata. The Estate class is used to 
represent fixed geographic automata . The Agent class represents non-fixed geographic 
automata.  
 
Following from GeoRelationship, three abstract relationship classes can be specified: 
EstateEstate, AgentEstate, and AgentAgent. The latter is not implemented in order to 
avoid conflicts in relationship updating (see section 4.3 below), and the only way of 
locating non-fixed agents modeled in OBEUS is by pointing to fixed estates; 
consequently, direct relationships between non-fixed objects are not allowed. This might 
limit possible applications of the system—we already mentioned the boids model 
(Reynolds 1999) as an example where direct Agent-Agent relationships are necessary. 
At the same time, the majority of urban models we are aware of do not need them, and 
most examples in which Agent-Agent relationships are important arise in contexts 
beyond the intuitive limitations of the “reactive agent” idea; marriage is one example 
that a reviewer of this chapter suggested. 
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Figure 3. A UML scheme illustrating the abstract-level classes of OBEUS and the example of model-level classes for a residential dynamics 

simulation.
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4.2.  Management of time in OBEUS 
The OBEUS architecture utilizes both Synchronous and Asynchronous modes of update. 
In Synchronous mode, all automata are assumed to change simultaneously and conflicts 
can arise when agents compete over limited resources, as in the case of two 
householders trying to occupy the same apartment. Resolution of these conflicts depends 
on the model's context, a decision OBEUS leaves to the modeler. In Asynchronous 
mode, automata change in sequence, with each observing a geographic reality left by the 
previous automata. Conflicts between automata are thereby resolved; but the order of 
updating is critical as it may influence results.  
 
OBEUS demands that the modeler sets up an order of automata update according to a 
template: randomly, sequence in order of some characteristic, and object-driven 
approaches are currently being implemented. 
 
4.3. Management of relationships in OBEUS 
Relationships in GAS models can change in time and this might cause conflicts, when, 
in housing applications, for example, a landlord wants to sell his property, while the 
tenant does not want to leave the apartment. This example represents the general 
problem of consistency in managing relationships. It has no single general solution; there 
are plenty of complex examples discussed in the computer science literature (Peckham, 
MacKellar, and Doherty 1995). OBEUS aims at minimal representation of the GAS 
framework and thus follows the leader-follower development pattern proposed by Noble 
(2000). To maintain  consistency in relationships, an object on one side, termed the 
leader, is responsible for managing the relationship. The other side, the follower, is 
comprised of passive objects. The leader provides an interface for managing the 
relationship, and invokes the followers when necessary. There is no need to establish 
leader or follower ‘roles’ in a relationship between fixed objects once the relationship is 
established, while in relationships between a non-fixed and a fixed object, the non-fixed 
object is always the leader and is responsible for creating and updating the relationship. 
For instance, in a relationship between a landlord and her property (when ownership 
cannot be shared), the landlord initiates the relationship and is able to change it. We do 
not have evidence that the majority of real-world situations can be imitated using a 
leader-follower pattern, but we are also unaware of cases—in urban contexts—where 
this pattern would be insufficient. 
 
4.4. Implementing system theory demands within OBEUS 
Systems theory suggests another challenge for automata modeling in which the 
usefulness of the GAS-OBEUS approach appears to offer advantages. In a systems 
context, many interacting automata are often necessary for capturing the nuances of 
geographic reality. It is very well known that if system rules are non-linear and the 
system is open, then emergence and self-maintenance of entities at above-automata 
levels become feasible. Gentrified areas and commuting zones are examples.  
 
The idea of self-organization is external to GAS and it is not necessary to incorporate it 
into the software implementation. Nonetheless, self-organization is often too important 
for studying urban systems to be ignored, even at the first step of GAS software 
implementation. To accommodate this, emerging spatial ensembles of geographic 
automata are supported in OBEUS by means of the abstract class GeoDomain. The 
simplest approach to emergence, determined by the set of a priori given predicates 
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defined on geographic automata is implemented; domains are thus limited to capturing 
‘foreseeable’ self-organization of specific types.  
 
As with non-fixed agents, domains are always leaders in their relationships with the 
automata within them. These relationships can capture properties such as distance 
between fixed automata and the domain; several definitions of distance based on 
objects’ and domains’ centroids, boundaries, etc. can be applied. 
 

4.5. Example of GAS modeling style – the Schelling model in terms of OBEUS 
The well-known Schelling model of residential dynamics (Hegelsmann and Flache 
1998; Schelling 1971) reflects a basic idea of residential segregation between the 
members of two mutually avoiding population groups, as a self-organizing phenomenon. 
Thomas Schelling realized his model with black and white checkers on a chess-board 
and from then on, the model is formulated in terms of agents of two types, B and W, 
located in the cells of a regular grid, with a maximum of one agent per cell. The essence 
of the Schelling model is in assumption that if the fraction of agents of strange type (say, 
of W-type for the B-agent) within the neighborhood of a current agent’s location is 
above the tolerance threshold of an agent, then an agent tries to relocate to a nearest 
unoccupied location, where the fraction of strange agents is below that threshold. The 
Schelling model is asynchronous and each agent observes the state of the system as left 
by the previous one. 
 
As an applied example of GAS, let us formulate this model in GAS terms and then 
present the entities and methods necessary to implement it in OBEUS. 
 
Two types of objects (K = 2) 
Fixed Objects: Cells C;  

Cell states S:  
Cells have no states, i.e. S1 = Ø; 

Cell location rules L:  
Each cell C is assigned a pair of coordinates (x, y) for direct location,  
L1 = {Locate C(x, y) at (x, y)}; 

Neighborhood rules R (Moore, as an example):  
R1 = {For a cell C(x, y), cells B(u, v), given max(|u – x|, |v – y|) = 1 are 

neighbors};  
State transition rules T:  

None, i.e. T1 = Ø; 
Movement rules M:  

None, Ml = Ø, there are no movement rules for fixed objects; 
Neighborhood transition rules N:  

None, N1  = Ø, neighborhood relations of fixed objects do not change. 
 
Non-Fixed Objects: Residents D,  

Resident states S:  
Resident can be in one of two states, B or W, S2 = {B, W}  

Resident location rules L: 
Resident is located indirectly, by pointing to a cell it occupies, R2 = {Cell C} 

Neighborhood rules R:   
R2 = {Residents located in neighboring cells are neighbors} 
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State transition rules T: 
None, T2 = Ø; 

Neighborhood transition rules N: 
None, N2  = Ø. 

Movement rules (one of the versions) M:  
M2 = {If fraction of strangers fR among the neighbors is below threshold, i.e. fR < 
fTH, do nothing; otherwise find the closest unoccupied cell satisfying fR < fTH and 
relocate there; if there is more than one at the same distance choose one among 
them randomly; if no suitable location is found do nothing} 

 
The OBEUS implementation of the ‘Schelling’ GAS is as follows (Figure 3) 
1. The abstract classes Agent and Estate are inherited by Resident and Cell, 

respectively; 
2. The abstract relationship classes EstateEstate and AgentEstate are inherited by 

CellCell and ResidentCell, respectively; 
3. Class Cell has no properties of its own; 
4. Class Cell has one basic method of its own getEmptyCloseCells(distance, cell), 

which employs getRelatedEstates (estate) and returns the list of non-occupied 
neighboring cells at a distance distance. 

5. Class Resident has two properties of its own - Boolean color, with values B and 
W, and real Tolerance threshold; 

6. Class Resident has two basic methods of its own, getFriends(resident, cell) and 
getStrangers(resident, cell), which employ getRelatedEstates(estate), and 
return lists of the neighbors of the color which is same or opposite to the color of 
a resident if located in a cell cell. 

 
The goal of the Schelling GAS is to study residential segregation and, thus, its 
investigation demands recognition of areas populated mostly or exclusively by B- or W-
agents. This can be done by specifying domain criteria based on the CellCell and 
ResidentCell relationship. Namely, let us consider a cell C occupied by resident R of a 
color L. Let us define the cell C as SL-true (segregation-true of a color L) if the fraction 
of resident’s neighbors of color L is above the given threshold f. For the Schelling 
model, if we take the value of f high enough (and higher than the tolerance threshold of 
residents), the sets of SL-true cells for L = B and L = W will form continuous areas that 
reflect intuitive understanding of segregation. The value of f determines the density of 
the residents of the same color in the domain and the degree of the overlap of SB and SW 
domains. The concept of domains is considered in more details in (Benenson, 
Aronovich, and Noam 2004) and it is beyond the scope of this paper. Let us note, 
however, that we consider the formulation of domain criteria and investigation the 
patterns produced by the geographic automata that satisfy the criteria as a necessary step 
in understanding spatial patterns that can emerge in the model. 
 

5. Conclusions 
We have introduced a GAS framework as a unified scheme for representing discrete 
geographic systems. Technically, the framework is designed to merge two popular tools 
used in urban simulation—CA and MAS —and specify them in a patently spatial 
manner. Conceptually, our assertion is that GAS forms the kernel of the system, as far as 
the system is spatially driven. 
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The minimal GAS skeleton allows for a degree of standardization between automata 
models and GIS. It also provides a mechanism for transferability. Until now, the 
majority of spatial simulations can be investigated only by their developers. The 
development of GAS software breaches this barrier, offering opportunities to turn urban 
modeling from art into engineering. 
 
A few additional steps are necessary for full implementation of the GAS framework; 
none, we think, requires decades of research to realize. The first requirement we have 
identified relates to transforming the GAS framework into software. As demonstrated 
with reference to OBEUS, we have advanced along that line of research inquiry, in 
urban contexts. Development of a (preferably geography-specific) simulation language 
based on GAS is a second requirement that we consider. The intent, in that context, is to 
enable the formulation of simulation rules in terms of objects’ spatial behavior. We 
believe that the continued development of simulation languages (Schumacher 2001) that 
has gathered steam in the last decade, coupled with advances in GI Science and spatial 
ontology, could answer this requirement in the near future. The third requirement is 
development of GAS applications. We have developed GAS-based models of housing 
dynamics (Benenson, Omer, and Hatna 2002) and urban growth (Torrens 2003, 2002) 
thus far, and the results are promising. 
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