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@Bdeling Geographic Behavior in Riotous Crowds

Paul M. Torrens and Aaron W. McDaniel
Geosimulation Research Laboratory, Department of Geography, University of Maryland

Under some conditions, tensions among crowd members, harbored a priori or developed on site, might catalyze
a crowd to riot, with dramatic consequences. We know perhaps less than we would like to about the processes
that drive rioting in crowds because they are difficult to study. In particular, we know relatively little about the
influence of geographic behavior on rioting, although there exists a general sense that it is important. In lieu of
pragmatic avenues for studying riots, we could use simulation as a synthetic laboratory for exploration. To be
useful, simulations must be based on realistic behavioral models, but the extant science for riot modeling has
not traditionally provided that support. In this article, we introduce a new approach to modeling riot-prone and
riotous crowds using behavior-driven computational agents. We demonstrate a simulation architecture based on
socioemotional agents, modeled at atomic levels and characteristic times for riot activity, but extended with
the use of geographical functionality that endows agents with spatial perception, cognition, and action that
helps to determine where, when, how, and in what contexts and company their agency should be deployed and
interpreted. In essence, our agents are polyspatial, with the ability to adapt their behavioral geography under
shifting circumstances and to differentially process geographic information from diverse sources. We illustrate
the usefulness of this scheme through simulation of a varying set of scenarios for riot formation, evolution,
and dissolution, as well as in exploring the interplay among different characteristics, traits, and goals of riot
participants. Key Words: agent-based model, complexity, geographic information science, riots, spatial analysis and
modeling.
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Bajo ciertas condiciones, las tensiones que se presentan entre los integrantes de una muchedumbre, en latencia
o desarrolladas en el propio sitio, podrian conducir una multitud a desbocarse en asonada, con consecuencias
dramadticas. Quizds conozcamos menos de lo que quisiéramos saber sobre los procesos que alientan la asonada
en muchedumbres, por lo dificil que es estudiar este tipo de conducta. En particular, sabemos relativamente
poco acerca de la influencia del comportamiento geografico sobre las asonadas, asf exista una sensacién general
sobre la importancia que esto pueda tener. A falta de aproximaciones pragmdticas para estudiar las asonadas,
podriamos utilizar la simulacién a titulo de laboratorio sintético de exploracién. Para que sirvan de algo, las
simulaciones deben basarse en modelos conductuales realistas, si bien la ciencia actual de modelizacién de
asonadas todavia no ha proporcionado tal apoyo. En este articulo introducimos un nuevo enfoque de modelizacién
de muchedumbres propensas a generar asonadas, o de turbas ya convertidas en asonada, utilizando agentes
computacionales de orientacién conductual. Hacemos la demostracién de una arquitectura de simulacién basada
en agentes socioemocionales, modelados a niveles atémicos y en tiempos caracterizados para la accién de asonada,
pero fortalecidos con el uso de la funcionalidad geografica que dota a los agentes con percepcién espacial, cognicién
y capacidad de accién que ayude a determinar dénde, cudndo, cémo y en cudles contextos y compafifa pueda
desplegarse e interpretarse su agencia. Esencialmente, nuestros agentes son poliespaciales, con habilidad para
adaptar su geografia conductual bajo circunstancias cambiantes y para procesar diferencialmente la informacién
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geografica proveniente de fuentes diversas. La utilidad de este esquema la demostramos a través de la simulacién
de un variado conjunto de escenarios para la formacién de asonadas, su evolucién y disolucién, lo mismo que
explorando interacciones entre las diferentes caracteristicas, rasgos y metas de los participantes en la asonada.
Palabras clave: modelo basado en agente, complejidad, ciencia de la informacién geogrdfica, asonadas, andlisis espacial y

modelizacién.

Up rolls a riot van and sparks excitement in the boys. But the
policemen look annoyed.

—Aurctic Monkeys (2006)

iots are just one possible outcome of human as-

sembly, but they are incredibly significant. They

can catalyze positive social dynamics, but if ri-
ots turn seditious, the consequences can be less than
desirable (McPhail 1994). Riots are difficult to study
for a number of reasons. First, many types of riot-
ing are possible, with different motivations, dynamics,
and outcomes (Haddock and Polsby 1994). These in-
clude food riots due to resource shortages (Auyero and
Moran 2007), social riots driven by inequality or in-
justice (Jackman 2002), protest riots that might begin
with peaceful demonstration (McCarthy, Martin, and
McPhail 2007), police riots challenging authority (R.
Stark 1972), or hooliganism following antisocial behav-
jor (Buford 1991). These distinctions are also elastic
(McPhail and Wohlstein 1983), making them difficult
to distinguish. Second, interpretation of rioting is al-
most necessarily subjective: What might be experienced
as a collective assembly by participants could appear as
a riot to another observer. This creates complications
in characterizing riot processes. Third, rioters are un-
reliably available for standard qualitative inquiry such
as surveys or interviews, making the collection of em-
pirical data during riots problematic (Sampson 1999).
Even analysis by pattern recognition in video footage is
difficult (Wohlstein and McPhail 1979) and might pro-
vide little insight into motivations and intent of riot
participants anyway (Prentice-Dunn and Rogers 1982).
Fourth, secondary data can be unreliable and biased
(Myers and Caniglia 2004), which hinders vicarious
analysis. Fifth, rioting is often dangerous for partici-
pants and experimentation with real people—even in
a controlled setting—is often infeasible (Kroon, Van
Kreveld, and Rabbie 1991).

Computer simulations could provide complementary
opportunities for studying rioting in a synthetic labora-
tory, if they can be usefully allied to theory, and this is
an idea that we promote in this article. We are not the
first to think of the idea, but our approach is novel. We
believe that geography can offer significant insight into

riot dynamics and we introduce a more authentic ge-
ographic representation of riot dynamics than existing
models have considered. We argue that this significantly
broadens the diagnostic ability of riot modeling.

Our approach incorporates several innovative fea-
tures. First, we include a cross-disciplinary substantive
foundation that accommodates traditional ideas about
rioting from sociology, psychology, and criminal justice.
These ideas are realized as model behaviors that de-
termine and animate synthetic rioters’ internal drivers
and their interactions with the social, emotional, and
physical environment developing around them. Sec-
ond, our agents are endowed with rich geographic func-
tionality that envelops their socio-psychological oper-
ability, casting it in spatiotemporal context. This is done
polyspatially, such that agents can extensibly configure
and use geographic behavior, becoming dexterous in
their interaction with geographic information, across
scales and contexts. Third, we built our model from
the bottom up, which enables us to design, assemble,
run, and control a riot—as a simulacrum (Baudrillard
1994)—in much the same way that a riot manifests
in the real world. This allows us to flexibly experiment
with different designs and characterization of synthetic
rioters and varying scenarios. Fourth, we introduce a
novel coupling of agent—automata models, space—time
geographic information systems, spatial analysis, spatial
statistics and geostatistics, and geovisualization as an in-
tegrated pipeline for designing, running, and evaluating
experiments about riot dynamics.

The article is organized as follows. We discuss links
between geography and rioting in the next section. We
then examine existing approaches to riot modeling. Our
methodological contributions beyond this foundation
are presented following that. We then introduce exper-
imental simulation scenarios and discuss results ahead
of our concluding remarks.

Geographical Perspectives on Rioting

The psycho-sociological processes underpinning ri-
oting are reasonably well covered as theory (Firestone
1972; Haddock and Polsby 1994), but geographic pro-
cesses have received less attention. Although it is un-
derstood that geography plays a significant role in riot
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dynamics, this is usually only explored anecdotally in
the theoretical literature.

Riots often manifest with significant spatial patterns.
Existing investigation of this topic has emphasized the
coarse patterning of rioting at the city scale (Adams
1972; Berk and Aldrich 1972; M. J. A. Stark et al.
1974; Carter 1986), but fine-resolution motifs of riotous
crowds are often overlooked, despite a need to better
understand interactions at this scale (McPhail 1994,
2008). Beyond the observational work of Wright (1978)
over thirty years ago, little fieldwork has been done to
investigate the genesis or effects of riot patterns within
crowds.

Spatial interaction is a logical catalyst for rioting:
people interact with each other over space and time
in riotous crowds (socially, physically, verbally, and,
increasingly, digitally; Marx and McAdam 1994;
Rheingold 2002). Riots can also be influenced by
diffusion processes: Rumor, panic, calm, and aggression
can spread through riots by interaction over space and
time, with individuals as vectors for their transmission
(Myers 2000). The popular emphasis on the crowd—as
a unit of concern—in much of the existing litera-
ture, however, sidesteps consideration of intracrowd
interaction (McPhail 1994).

Scaling can also shape riot dynamics, for example,
when local incidents catalyze wider response (Jacobs
1996). Spatial complexity is a related consideration.
Scaling in crowd behavior is often mediated by com-
plex phenomena such as feedback, emergence, path de-
pendency, and self-organization, each of which rely on
system scaling (Vicsek 2001, 2003). Relatively little
has been done to explore the role of scaling in riot
phenomena; indeed, most studies have settled on a sin-
gle (usually coarse—the city) scale in analysis (Abudu
et al. 1972; Adams 1972; Carter 1986; DiPasquale and
Glaeser 1998).

Geographic behavior is also significant in explaining
riot dynamics. Some geographic behaviors might pre-
empt a riot: unlawful assembly, routs, collective locomo-
tion of strangers, or loitering of groups in certain places
and times, for example (McPhail and Wohlstein 1983).
Police behavior amid rioting is usually geographical.
This has been documented at the city scale (Yarwood
2007) but is also important within crowds (Prati and
Pietrantoni 2009). Police can divide a crowd spatially
to minimize the spread of rioting or might corral rioting
crowds into spaces that can be more effectively policed
or where they can minimize contact between rioters and
nonrioters (Newman 1972). Spatial cognition is a cru-
cial component in riot behavior. People’s perceptions

of ambient conditions in riotous crowds (Felson 1982)
and shifts in their mental maps amid confusion could
alter their behavior (Mawson 2005). Law enforcement
could target directly rioters’ spatial cognition by pro-
jecting or inflating an impression of impending force us-
ing particular collective movement strategies (Prati and
Pietrantoni 2009); by disrupting rioters’ spatial cogni-
tion with aerosols; by blocking line of sight; or by inter-
fering with their spatio-aural perception (Waddington
1991). Although geographic behavior is recognized in
the literature as being important, the detailed behav-
ioral interplay between individuals and within crowds
has not been investigated in sufficient detail, despite
calls for focus on the topic (McPhail 1994).

Physical geography is also important to rioting. Riots
might originate in places and times with significant
historical geography (Haddock and Polsby 1994).
Some built environments might be temporarily or
permanently modified to reduce the physical substrate
for rioting, using barricades and fencing, by designating
sanctioned time geographies for demonstration, by
charting routes for protesters to march along, or by in-
stalling surveillance equipment as a deterrent (Newman
1972). These ideas, although very relevant for un-
derstanding riot geography, have not benefited from
thorough examination. Even Newman’s famous work
focused largely on architecture, rather than people.

Existing Riot Models

In the absence of tangible testing grounds for rioting,
computer simulation can be used as a virtual laboratory.
The theory needed to explain riot dynamics is relatively
underdeveloped, however, and model builders, lacking
obvious starting points for development, have tended
in the past to bend models designed for other purposes
to fit riot behavior.

The majority of riot modeling work has been de-
veloped for research of operations other than war
(OOTW), whereby models of noncombatant crowds
are infused into military simulations for the purposes
of evaluating plans and strategies (Lauren and Stephen
2000, 2002; Yiu, Gill, and Shi 2002; McKenzie et al.
2004; Petty et al. 2004). Not all riots are related to mili-
tary activities, however, and socio-geographic dynamics
are not often a main concern.

Another thread has developed in political studies,
with focus on civil violence using game-theoretic mod-
els. Game-theoretic approaches carry some limiting
assumptions, however, such as rational actors, perfect
information, and simple rule-of-thumb heuristics for
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behavior (e.g., tit-for-tat or winner-takes-all). The
Brookings Model of Civil Violence (]J. Epstein 2002) is
a popular example of this work.

Riot-like models have also been built in physics,
because of curiosity about apparent correlations
between social behavior and continuum mechanics
of physical particles in constrained spaces (Vicsek
2003). Continuum models are useful for representing
aggregate flow and crowd turbulence in confined spaces
(usually conduits like stream channels or pipes), but
they do little to accommodate realistic human behavior
(Treuille, Cooper, and Popovi¢ 2006). Nevertheless,
many continuum models have been ported directly to
riot modeling (Kirkland and Maciejewski 2003; Bhat
and Maciejewski 2006; Pabjan and Pekalski 2007).

Another thread of riot models has been developed
in sociology, mostly to represent psychology of social
signaling in collective action, using artificial intelli-
gence (McPhail, Powers, and Tucker 1992; McPhail
1994; Tucker, Schweingruber, and McPhail 1999).
These types of models tend to emphasize individual
decision making rather than intrapersonal interactions
(McPhail 1994).

Generally, geography (and particularly geographic
behavior) has received only cursory attention in most
riot models. This is especially evident in representation
of movement. Although long understood to be crucial
in rioting (McPhail and Wohlstein 1986), movement
is often relegated to random hopping between rounds
of game-theoretic exchange (Yiu, Gill, and Shi 2002)
or abstract representation using physics of particle flow.
For example, the J. Epstein (2002) model treated move-
ment by random picking up and dropping off of agents
in cellular lattices. The model developed by Goh et al.
(2006) actually relied on Conway’s mathematical rule
set for the Game of Life (Gardner 1970) for movement
(this is just nonsensical; the Game of Life was built to
test the computability of self-replication and has noth-
ing to do with movement; Faith 1998).

The determination of neighborhoods of interaction
is also weak in most riot models and this is another
tell-tale sign of shortcutting in modeling movement.
A majority of riot models use cellular automata for
spatial interaction, which often limits agents’ (really,
cells’) activity to fixed, symmetric rasters (Torrens
2009). Dibble and Feldman’s (2004) graph-based agent
models focused admirably on the social network space
of riot participants but lacked locomotion (in fairness,
their models were designed to test graph-network
approaches, not movement). Considerable overhead is
required to infuse mathematical models with realistic

geographic behavior and so the diluted treatment of
geography in existing riot models is understandable but
disappointing.

A New Approach to Riot Modeling: Our
Methodology

Motivated not only by a desire to build on the
work we just discussed but also to broaden the
range of questions that would be posed in simulation,
we introduce an innovative modeling infrastructure for
riot dynamics by infusing added realism. Geography is a
particular focus of our efforts, but the model is flexible so
that a variety of social, physical, or psychological model
“engines” could be embedded within the framework
that we provide. Indeed, we demonstrate how this
is possible, by taking the popular ]J. Epstein (2002)
conflict model as the engine for socioemotional agency
and “wrapping” it with geographic functionality that
mobilizes that agency through simulated perception,
cognition, spatial interaction, way-finding, steering,
and locomotion. The resulting polyspatial agents then
become the building blocks for theory-driven riot sim-
ulations. Their geographic functionality also enables
second-order geographic processes, such as spatial
interaction, diffusion, scaling, spatial self-organization,
and patterning to be derived from those primitives.
Agents’ dynamics in simulation are not scripted; rather,
they are processed or computed from a model that
determines their behavior given agent characteristics
(states) and algorithms (rules) that feed on agents’ en-
dogenous attributes; the shifting social, emotional, and
physical conditions that unfold around them; and the
events that they choose to interact with. Any resulting
riot processes or phenomena are then derived (we could
say “emerged”) directly from these synthetic behaviors.

Agent-Based Crowds

We use an agent—automata architecture for our
model (Turing 1950), with several advantages.
Agent—automata can be represented atomically and
driven autonomously at individual scale and charac-
teristic time. This helps to overcome problems of eco-
logical fallacy and modifiable areal units (Openshaw
1983; Wrigley et al. 1996), by improving fidelity. Char-
acteristic timing allows agents to be represented with
true temporal dynamics, avoiding the need to rely on
comparative snapshots as a proxy for temporal contin-
uum (again, coarse representation is the standard ap-
proach). This is particularly valuable when dealing with
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dynamic crowds, where we might be keenly interested in
subtle temporal differences in behavior and outcomes,
small deviations from spatial and temporal regularities
or norms, or serial effects in the space—time continuum
of processes.

Agent—automata can be fashioned as perceptive
creatures, with ability to reason about their surround-
ings. Agents can be given bounded rationality: Their in-
formation about the conditions unfolding around them
might not necessarily be complete and they might act
solely on the information they have on hand (in con-
trast to standard approaches in game theory, for exam-
ple). This is useful for representing forces of bias and
even subterfuge in riotous crowds (Prentice-Dunn and
Rogers 1982).

Agents are communicative: They exchange informa-
tion by passing state descriptors. This can be significant
when representing information diffusion in riot phe-
nomena (Myers 2000; Rheingold 2002). In our model,
we focus on nonverbal communication, which is a topic
with considerable currency in the literature (McPhail
1994).

Automata are not inherently mobile in their origi-
nal design (although the information that they contain
could be). Lending agents locomotive abilities enables
the modeling of pursuit, avoidance, dispersal, and chas-
ing behavior, each of which are understood to factor

into rioters’ behaviors (Haddock and Polsby 1994).

Using the Epstein Model to Provide Socioemotional
Agency

We used J. Epstein’s (2002) conflict model as the
socioemotional core of our model. Although Epstein’s
model actually deals with civil violence, it provides a
parsimonious treatment of socioemotional agency that
we can (re-) use. It is important to stress that we have
developed significant additional infrastructure around
this foundation by wrapping it with geographic func-
tionality and that we subsumed the algorithms for the
model (not the software) in our pipeline. Coupling di-
verse agent-based models (Rank 2010) and spatializ-
ing nonspatial agent behaviors (Torrens and Benenson
2005) is an active topic of research in the simulation
community.

Following J. Epstein (2002), we consider four classes
of agent-actor in simulation; Civilian, Rebel, Jailed,
and Police. Agents can transition between these roles
as their agency dictates, Civilian <> Rebel — Jailed
— Civilian. Rebel agents that are apprehended be-
come Jailed agents. (We realize that the term rebel has

significant connotations, but we use it here to simply
distinguish members of the crowd that act out an inter-
nally held grievance.) Police agents are also introduced,
but Civilian and Rebel agents cannot transition to law
enforcement roles and Police agents cannot be seduced
to riot. These four classes provide a minimal but satis-
factory set of protagonists and match standard distinc-
tions in related models (Lauren and Stephen 2000; Ling
2001; Yiu, Gill, and Shi 2002; Kirkland and Maciejew-
ski 2003; Petty et al. 2004; Bhat and Maciejewski 2006
Goh et al. 2006).

Socioemotional State Descriptors. Agent state-
descriptors are bundled to produce a socioemotional
profile for actors in simulation. States are dynamic; they
can change as agents exchange information and act, re-
act, and interact in simulation. Bundling is organized as
follows.

Ssocivemotional = 1H, L, G, R, P, N}V Civilian and
Rebel agents,

H=10,1]
O<L<l1
where G=H({-L) (1)
P=1-—exp (—k%v)
N =RP

J. Epstein (2002) did not provide much theoretical jus-
tification for states in his original model, but we have
carefully considered this in our design. (Coincidentally,
the states that Epstein proposed represent the dominant
theoretical arguments in riot research well.) Members of
riotous crowds might act out when they reach extremes
of unhappiness (Prentice-Dunn and Rogers 1982), so
we lend agents an internal sense of hardship (H). H =
1 when agents feel suffering and H = O when they do
not. Rioters usually direct their discontent at something
or someone (Firestone 1972), so in simulation citizen
(non-police) agents are equipped with a sense of le-
gitimacy (O < L < 1) toward authority, represented on
the ground as police (Gillham and Marx 2000), ranging
from an absence of respect for authority (L = 0) to am-
bivalence (L = 0.5) and unequivocal support (L = 1).
Agents’ feelings of legitimacy are an endogenous char-
acteristic. As rioters might wish to keep feelings hidden
from police, we represented Civilian agents’ outward
affect with a grievance level, G = H(1 — L). Although
citizen agents might feel complete dissatisfaction with
their lot in life or with authority, their propensity to act
on those feelings is tempered by an appreciation for the
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consequences of action (Milgrim 1964; McPhail and
Wohlstein 1983). This is introduced as risk-taking in
simulation (R) and a calculation of the net cost—benefit
of acting out (N). This calculation (per agent) balances
tolerance for risk, the safety in numbers of like-minded
citizens in the crowd, and the local presence of author-
ity, N = RP (this is synonymous with the “gaming” cal-
culation of relative cost introduced by Berk 1974). The
state P = 1 — exp (—k%v) is the probability of capture
per agent, where A is the number of Rebel agents and
C is the number of Police agents. V defines how far Po-
lice agents can see; this is essentially an arrest filter per
Police agent. J. Epstein (2002) originally used a Moore
neighborhood (a fixed-size, nonmobile, symmetric fil-
ter) to poll states in his cellular automata model; we
have extended this concept considerably. Finally, K is
a scaling term used to ensure plausible values of P for
values of A=1and C = 1. A value of P = 0.9 is usually
reasonable (J. Epstein 2002).

Enabling Dynamically Shifting Attitudes and Emo-
tions. Transition rules control state dynamics by al-
lowing agents to obtain behavioral access to states (their
own and those of other agents) and by providing agents
with the ability to process that information for their
behavior. An activation rule determines shifts in de-
meanor (which is a metastate) from Civilian to Rebel;
that is, the decision to riot.

Activation
Civilian, — Rebel,+1 ifits [H(1 — L) —RP] > T (

= =0.1)
Civilian, — Civlian, yotherwise (2)

Activation includes a user-defined parameter (T) that
controls the threshold for acting out (Granovetter
1978).

Police agents’ arrest behavior is described by an arrest
rule:

Arrest
Rebel, — Jailed,_, jpnqy if Rebel, € 'V, and is selected
" | Rebel, — Rebel, , jotherwise (3)

Selection was random in Epstein’s model, but we added
functionality to make it guided, targeted, or weighted.
Jmax is user-definable and determines the length of Jailed
agents’ incarceration. Jailed agents are removed from
the simulated space and are essentially stripped of their
agent rights while incarcerated and are not eligible for
state-exchange or transition over time (t—>jmay)-

Extending Epstein Agents: Introducing Geographic
Behavior

The preceding characterization is sufficient for
generating emotional interplay between agents. We
extended this scheme by empowering agents with
geographic functionality that wraps around their so-
cioemotional agency to determine how, where, when,
and in what company and contexts those agencies
should be deployed or interpreted (Figure 1). We specif-
ically bestowed agents with polyspatial behavior that
allowed them to flexibly and intelligently deploy spatial
cognition, vision, collision-detection heuristics, spatial
targeting, way-finding abilities, locomotion, physical
and affective steering, and the ability to develop and ap-
ply spatial biases, tactics, and strategies. This represents
a considerably richer and more authentic geographical
functionality than is usually presented in existing
models. These behaviors are detailed individually as
follows and the algorithmic procedure for integrating
them in run time is presented in Algorithm 1.

Algorithms

Algorithm 1: pseudo-algorithm for behavioral geography update
and information flow order

—_

Initialize simulation scenarios

Assign initial (temporary) headings and directions using
random values within each agent’s vision

Check to see if weightings need to be applied (user-defined)

If weights are required, calculate affective targeting

List relevant agents within vision

Cull obscured agents

Target the closest remaining agent (if any remain)

Calculate vector to or away from target

9 Calculate magnitude of vector

10 Determine new position

11 If new position is occupied, return to (3)

12 Detect collisions

(o)

@~ 0N Lt AW

a. Look toward your direction
b. Cast a vision ray using user-defined distance
c. Reel in the vision ray
d. Catalog potential collisions
e. If no collisions are within movement range, proceed to
(13)
f. If collisions are within movement range, perform brief
random walk and return to (a)
13 Move
14 [For arrest, if agent is within user-defined capture
threshold, arrest]

Improving Agents’ Geographical Perception of
Their Dynamic Surroundings. A first step in building
useful geographic behavior is to provide agents with re-
alistic spatial perception of events around them. In most
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Figure 1. Schematic overview of the docking of socioemotional agency with behavioral geography.

riot models, a cellular automata (CA) neighborhood
filter is used. This is a fixed and symmetrical grid that
is homogeneously projected around each agent (Tor-
rens 2009). Usually, neighborhood sizes and shapes are
not differentiated. Fixed CA neighborhoods are prob-

lematic because they are unrealistic: They lack direc-
tionality and they allow people to literally have eyes
in the back of their heads; they also tend to over-
specify the amount of spatial interaction in a system
(Torrens 2011). Instead, we use synthetic vision: Per
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Figure 2. An agent-actor (yellow) examines its neighborhood and identifies other entities that fall within its visual filter, focusing on the
entity that is closest (red). The agent-actor could also use its mental map to prioritize entities that it encounters in its environment (e.g., a

wandering hippopotamus). (Color figure available online.)

agent awareness of the environment is (uniquely) pro-
jected within a visual field (Figure 2). Returned data are
stored as a mental map and this provides the informa-
tional substrate for subsequent behavior.

Vision (F,) is cast as a sector with origin at the cen-
troid of an agent’s footprint. Casting is projected in a
forward direction along the unit vector of the agent’s
direction of travel (a.), so that it is tight-coupled to
agents’ movement. Sizing and shaping of agents’ vi-
sion is determined by user-defined parameters for ra-
dius r (line of sight) and angle 6 (field of view), but
these can also change dynamically or algorithmically
in run time as needed (F, — irEZOI). The radius of the
sector is also tempered with a user-defined velocity-
decay parameter —e that discounts longer values of r
(as r*) when an agent is moving relatively quickly, en-
abling agents’ visual appreciation of their surroundings
to be elastic. Police agents can only apprehend Rebel
agents when they are physically close to them. An ad-
ditional test is added to the Police’s vision to allow
them to evaluate whether their target Rebel falls within
a user-defined distance threshold. Agents also use
their vision to check whether objects are obscured, by
ray-casting.

Way-Finding. Before agents move, they need to
decide where to go. We achieve this with synthetic way-
finding by targeting. Agents use their vision to catalog

their surroundings and then they prune this informa-
tion by targeting specific relevant things in their vision;
targets then serve as way-points for subsequent steering
and locomotion behaviors.

In the absence of a specific target, agents move by pur-
poseful milling. We provide them with a quasi-random
feed of way-points within their vision. This produces
smooth movements through incremental course cor-
rection as agents’ displacement is constrained within
their visual field over (t — t+1). Note that this is not
a mathematical-style random walk, where agents could
perform instantaneous about-face maneuvers without
having to slow down and correct their steering first.
Way-finding can also be tenacious. For example, the
locations of Rebel agents become targets for the Po-
lice, allowing them to patrol the streets literally looking
for Rebel agents to apprehend. Similarly, Rebel agents
might target nonrioters as recruits to their cause.

Way-finding is resolved as follows. First, an agent
checks its vision for the presence of other entities, mem-
orizing their locations. It identifies agents that it wishes
to target, by checking its affect toward them. The agent
then uses ray-casting to determine whether any of the
candidate entities is obscured. What remains is a subset
of entities that are not obscured and that are affectively
relevant. The target agent that is closest to the observ-
ing agent in this set is then selected as the target (in the
case of a distance tie, for example, between Rebel and
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Civilian or between Police and Civilian, the Civilian
is made the target). Although agents collect all of the
information that they see in their surroundings, they fo-
cus their behavior and processing only on a single entity
at a time. This is realistic given the small space—time
geographies in our model, which run at scales of a
single footstep. It is also relatively efficient compu-
tationally, avoiding unneeded querying. Moreover,
this approach allows us to avoid unrealistic averaging
artifacts common in many potential-based models,
which might cause an agent to cancel out conflicting
push—pull influences in its neighborhood and just
remain in situ or float like a rudderless boat along a
previous vector (Helbing and Molnér 1995; Treuille,
Cooper, and Popovié¢ 2006).

Steering and Locomotion. Ready with a decision
about what to do, agents actually move by steering and
locomotion. Despite the significance of collective loco-
motion in rioting (McPhail and Wohlstein 1986), this
functionality is generally not provided in existing riot
models and its absence really cripples agents, depriv-
ing them of means to move relative to other things or
people in simulation.

We allow agents to physically steer within crowds,
and we allow them to steer emotionally, by considering
their affect relative to a target. Agents’ mental maps
provide the vectors of visible targets, so an agent can
compare its own vector to the target and it can adjust
its speed and steering to adopt a trajectory that inter-
cepts or avoids the target (Figure 3). Vectors for the

pursuer (a) and target (b) are considered between two
points in space (ap, a;) and (b, by), respectively. We
consider only two-dimensional vectors, (a = [Z;‘ ) and

(b= [lg;]) (where ay is the position of a in the x-axis

and a, is its position in the y-axis € R?). Directions for
these vectors are obtained by normalizing them such

that (a = IZ_\ =1)and (b= ‘Ig—l = 1). The velocity of

the vectors is taken as the first differential of their po-

sitions (ap, a;) and (bo, by), respectively: a :1&[?90 %
and b =IE‘_>O i—?. When a pursuer seeks out a target, it

calculates an intercept vector ¢, (c = a — b) by vector
addition. The steering vector for pursuer a to chase and
intercept b is then (d = ¢ — a) by vector subtraction.

We also introduce differential effort so that agents
can move relatively quickly or slowly, as they need. The
steering vector of pursuit is [d = (¢ — @)@nq] when a
chases b with maximum effort. Here, we overload the
notation d for consistency with the notation of related
vectors in Figure 4; this d should not be confused with
the distance d of the ray cast in Figure 2. Vectors for
fleeing with maximum haste are taken as the inverse
of seek vectors; that is, [-d = —((c — @)dmay)]. (Note
that vector calculations are computed in simulation.
The notation for the equal sign therefore represents
an algorithmic assignment function of variables and
parenthetical statements denote the logical order in
which the algorithmic methods are assessed.)

Proactively Detecting and Awoiding Collisions.
To effectively actuate their behavior in busy crowds,

5\_d< Flee vector ‘

a °

d< Pursuit vector ‘

Figure 3. Steering behavior for pursuit or evasion of a target. A pursuer targets another agent and might adopt a steering vector to pursue or

flee that target.
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Figure 4. Ray-casting for collision detection and
depth perception. A ray is cast in the direction of
a and it is successively shortened in the direction
of the agent-actor until d ~ 0.

iy {consfon = true if d,_,,» N (any other [relevant] object)

collision = false otherwise

agents often need to preemptively avoid or pursue things
that they see or take an interest in. Existing riot models
rarely treat even rudimentary geographic behavior of
this kind.

We introduce collision detection using modified
ray-casting (Roth 1982; see also Figure 4). This al-
lows each agent to project its movement vector by a
user-defined magnitude |d;| and to deploy the pro-
jection as a sensor. For collision detection, we take
the time step (t — t + 1) and subdivide it into
smaller subincrements nested within (t = ¢t + 1), such
that [(t =t/ +1—> ... > t/+AtNYe(t =>t+1)]
The temporal length of (¢ — At’) is related to
the spatial length of (|dy|). The cast ray is iter-
atively shortened at the far end of its projection
O~ |dyyarl <+ < |dvga| < |dvy1]| < |dy|) until it
approaches zero distance from the agent’s position cen-
troid. At each increment of t’, the ray is checked
for interruption by moving or fixed objects. If a col-
lision is determined, the agent will halt movement over
(t — t + 1), either giving the moving object time to
pass by yielding or giving the other movement rules
in the agent’s behavior an opportunity to determine a
diverted path around the obstacle. For fixed obstacles,
the agent “retracts” the cast ray to a location just free
of collision and uses this as a target for flee behavior.

Affective Movement. A set of weights is intro-
duced per agent to accommodate agents’ affective bi-
ases in movement (Willis, Gier, and Smith 1979). At a
simple level, weighting affords agents greater interest in
relevant objects than in irrelevant objects, but it also di-

rectly couples emotional perception to movement, per-
mitting the parameterization of goal-driven strategies
and tactics. We borrowed the idea of weighted interac-
tion influence from Yiu, Gill, and Shi (2002), who used
weights in their civil violence model to control infor-
mation exchange in CA neighborhoods. Our approach
is distinct, however, as it is specifically adapted for mo-
bile, dynamic, sociospatial weighting of agent move-
ment vectors. The weights are user-defined, allowing
for the influence of varying strategies to be explored in
simulation.

Rebel agents’ affect is controlled by A, which pro-
vides a user-defined balance of emotional affordance
that might see-saw between Police and Civilian agents;
Police agents are guided by 1, the relative trade-off be-
tween Rebel agents and Civilian agents. A is calculated
for Rebel agents as follows.

For Rebel agents, (—Whpice + Weiiion = 1) and

= ﬂ where — 1 < Whyee <0 (4)

WCivilian

Users can adapt Rebels’ relative weighting by con-
trolling Wpyie (the weight that Rebel agents lend to
Police agents in their local surroundings). For example,
if a simulation user tips the scale to a value of Wpgj. =
—0.5, then Wgien = —0.5 and A =1, which produces
an ambivalent affect for Rebels relative to Civilians and
Police. If the value of Wp,;.. = —0.7, then Weiiion = 0.3
and = 2.33, which produces a strongly negative affect
for Rebels, affording them a strong aversion to the Po-
lice.



Downloaded by [AAG ] at 14:19 19 June 2012

Modeling Geographic Behavior in Riotous Crowds 11

Another weight (1) is introduced for Police agents,
as follows.

For Police agents, (Wrebel + Weivilion = 1) and
o= WRebel
WCiqzilian

s Where 0 =< WCivilian =< 1 (5)

uallows Police agents to trade-off affect relative to
Rebel and Civilian agents. It is controlled by adjust-
ing the value of Wi Preference is given to Civilian
agents in the event of a tie for A and for u.

When a pursuer identifies a target (e.g., a Police agent
identifies a Rebel agent to arrest), it calculates an inter-
cept vector in unit form and then assigns (through algo-
rithmic update) a magnitude to that vector based on the
result of its weighting calculation; that s, |d| = (d + )
for Rebel agents and |d| = (du) for Police. This mim-
ics affective movement as it occurs in the real world;
for example, when people steer to avoid undesirable en-
counters on a street or move to avail of an intervening

opportunity (Dabbs and Stokes 1975).

Coming Unstuck, if Necessary. On the rare occa-
sion that agents become stuck in situ, they divert their
movement behavior:

a.,21 = (a, £ e), IFF the agent’s position remains

<ao¢ —> A0+1 —> ... —> dge+20 > (6)

In Equation 6, a is an agent’s original vector

(aody). If an agent stays in situ for twenty time steps
(t—>t+1—...—>t+20),itisnudged into motion
again at t + 21 with e, a random vector that sets an
agent on a slightly new course with a small user-defined
magnitude and random direction & # a.

A Note on Timing. Timing is handled pseudo-
synchronously (Bengtsson and Yi 2004), using memory
buffering to update agents’ information collection and
transition. One time step resolves a complete synchro-
nization of all agents’ transition processing with the
information they have for that time step (Algorithm
1). The timing for this is, of course, artificial because
it is simulated, but it is set to be roughly equivalent
to a real-world second (based on plausible velocity for
agents relative to real-world people). The simulation
will often run much faster than life on a computer, but
in the results that we present, the relative timing is as we
have just described. (The timings and synchronization
can be altered.)

Experimenting with Riots in Simulation

We devised four sets of scenarios to explore riotous
crowd dynamics in simulation (the parameters for each
scenario are listed in Table 1). Two scenarios were de-
signed to establish base conditions in simulation:

¢ Base, in which 1,000 modeled agents were endowed
with what will then serve as default characteristics
and were placed in a plaza-type setting, as might
be found in central cities or around monument in-
frastructure. These types of spaces are often chosen
for collective assembly (Newman 1972; McPhail and
Miller 1973). Fifty police agents were deployed to the
crowd, to represent police units that might be called
to oversee a demonstration (Earl and Soule 2006).

o Built environment, in which 285 agents were placed
in a smaller urban setting with built infrastructure.
This provided a simple test of the influence of the
built environment on riot dynamics: Agents had to
negotiate and move around built infrastructure and it
influences their ability to acquire information about
the events around them. Fifteen police were intro-
duced, as might be found on foot patrol.

The second set of scenarios was used to explore riot-
ing from the perspective of Civilian and Rebel agents:

e Mass protest, in which a larger volume of Civilian
agents (5,000 instead of 1,000) was introduced. This
provided ingredients for a protest riot (Earl, Soule,
and Mccarthy 2003; McCarthy, Martin, and McPhail
2007).

e Angry mob, in which 1,000 hyperaggrieved Civil-
ian agents (i.e., possessing higher initial values for
grievance; see Table 1) were introduced to the sim-
ulated space. This provided opportunities to experi-
ment with dynamics of food riots (Taylor 1996).

The third collection of scenarios portrayed crowd
dynamics from the perspective of Police agents:

¢ Nonengagement, in which fifty Police agents were mo-
bilized to supervise a crowd of Civilian and Rebel
agents but were under instructions not to arrest any-
body (although the Civilian and Rebel agents did
not know this). This allowed us to experiment with
the influence of Police on crowd perception (Prati
and Pietrantoni 2009).

e Riot police, in which a 200-strong squad of Police
agents was deployed to the riotous crowd, as a force-
in-numbers (Waddington 1991), in addition to their
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Table 1. Varying parameterization of the model to produce different simulation scenarios

Simulation scenario

Variable Base Built environment Riot police Mass protest Angry mob Nonengagement
Simulation run time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
Legitimacy 0.82 0.82 0.82 0.82 0.25 0.82
Maximum jail term 24 hours 24 hours 24 hours 24 hours 24 hours 0 hours
Civilian and Rebel vision (m) 7 7 7 7 7 7
Police vision (m) 7 7 7 7 7 7
Number of Police 50 15 200 50 50 50
Number of citizen agents 1,000 285 1,000 5,000 1,000 1,000
Rebel Wpgjice 0.5 -0.5 -0.5 0.5 -0.1 0.5
Rebel Weivitian 0.5 0.5 0.5 0.5 0.9 0.5
Rebel A 0.5 0.5 0.5 0.5 0.11 0.5
Police Wrepe 0.5 0.5 0.5 0.5 0.5 0.5
Police Wciyilian 0.5 0.5 0.5 0.5 0.5 0.5
Police 1 1 1 1 1 1
Arrest distance (m) 2 2 2 2 2 2

Is jail a deterrent? Yes Yes Yes Yes Yes No
Agent field of vision 120° 120° 120° 120° 120° 120°
Patch length per agent step (m) 0.25 0.25 0.25 0.25 0.25 0.25
Distance buffer (m) 0.5 1.25 1.25 1.25 1.25 1.25
Infrastructure obstacles? No Yes No No No No

default behavior. This provided the seeds for a police
riot (R. Stark 1972).

The fourth set of scenarios was designed to explore
the interplay between varying tactics and strategies for
agents (Table 2):

e Equal treatment, in which Rebel agents were equally
disposed to pursuing Civilian agents and avoiding
Police agents, and Police agents gave equal prefer-
ence to chasing Rebel agents and protecting Civil-
ian agents. This tested the balance between opposing
forces of control in the crowd (this is the base sce-
nario already described).

e Police pursue Rebels, in which Rebel agents balanced
their preferences for fleeing from Police agents and
pursuing Civilian agents to recruit, but Police agents
weighted their behavior strongly in favor of pursuing
Rebel agents, with a comparatively weak impulse
toward Civilian agents. This created an enforcement
role for police.

e Police protect Civilians, in which the preceding sit-
uation was reversed: Police agents weighted their
behavior strongly toward protecting Civilian agents
at the expense of a weakened impulse for chasing
Rebel agents to arrest. This placed Police in a pro-
tective role.

o Rebels recruit Civilians, in which Police agents
adopted equal affective propensity toward Rebel and
Civilian agents, but Rebel agents weighted their be-
havior strongly in favor of seeking out Civilians to
recruit to the cause, ceding most of their desire to
evade capture by the Police. This rendered rioters
relatively active in expanding further rioting.

e Rebels avoid Police, in which the Police adopted a
balanced strategy again, but Rebel agents favored
avoiding Police over recruiting Civilian agents. In
essence, this characterized rioters as relatively risk-
averse.

e Battle for Civilians, in which the Police agents
strongly weighted their behavior toward protecting
and recruiting Civilian agents and the Rebel agents
emphasized recruitment of Civilian agents to the riot.

e Cat and mouse, in which Rebel agents were strongly
weighted toward avoiding Police, whereas the Police
were strongly weighted toward capturing them.

In all model runs, agents’ bodies were represented
with circular area of 0.1419 m?, which provided a real-
istic physical footprint on the ground and a small buffer
to account for ambulation of their limbs (Fruin 1971).
We were most interested in rather small-area spatio-
temporal dynamics, so agents were placed in a square
field space of ~4 km? in area in most of the scenarios
and their activity was tracked on the order of seconds.
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Table 2. Varying parameterization of the model to produce varying behavioral strategies for agents in simulation

Strategies

Equal Police pursue  Police protect ~ Rebels recruit Rebels avoid ~ Battle for Cat and
Variable treatment rebels civilians civilians police civilians mouse
Simulation run time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
Legitimacy 0.82 0.82 0.82 0.82 0.82 0.82 0.82
Maximum jail term 24 hours 24 hours 24 hours 24 hours 24 hours 24 hours 24 hours
Civilian and Rebel vision (m) 7 7 7 7 7 7 7
Police vision (cells/m) 7 7 7 7 7 7 7
Number of Police 50 50 50 50 50 50 50
Number of citizen agents 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Rebel Wp,jice -0.5 -0.5 -0.5 -0.3 -0.7 -0.3 -0.7
Rebel Weiviian 0.5 0.5 0.5 0.7 0.3 0.7 0.3
Rebel A 1 1 1 0.43 2.33 0.43 2.33
Police Wrepe 0.5 0.7 0.3 0.5 0.5 0.3 0.7
Police W ciyitian 0.5 0.3 0.7 0.5 0.5 0.7 0.3
Police 1 2.33 0.43 1 1 0.43 2.33
Arrest distance (m) 2 2 2 2 2 2 2
Is jail a deterrent? Yes Yes Yes Yes Yes Yes Yes
Agent field of vision 120° 120° 120° 120° 120° 120° 120°
Patch length per agent step (m) 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Distance buffer (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Infrastructure obstacles? No No No No No No No

This field space was designed as a torus for the sake of
tractability in simulation, although only a small frac-
tion of total agents interacted on the borders. (The
built environment scenario was constrained to 303 m?
in area and agents were confined within its bounds.)
We should note that the model can accept larger
spaces and any two-dimensional configuration of built
environment.

Results

We examined the outcomes of the simulation sce-
narios using several vantages. First, we wanted to test
whether the model could generate realistic geographic
behaviors within crowds, as this is underdeveloped in
existing models. The second concern was for complex-
ity and the model’s ability to produce novel behaviors
through complex adaptation—what might, arguably,
be termed as emergence—and whether it could gener-
ate qualitatively complex signatures (J. Epstein 1999).
The third evaluation property relates to the usefulness
of the model in supporting theoretical inquiry about
rioting.

In what follows, the results of each of the scenarios
mentioned in the previous section are presented in the
context of the four criteria we have just described. Each
simulation scenario was run ninety-nine times and we

report averaged results to reduce the potential influence
of artifacts from initial (random) positioning of agents
at the start of a simulation run. Each individual model
run generated 43.2 million data points. Running each
scenario yielded a total of ~4.28 billion data points.

Base Scenarios

The base parameterization provided a mixed riot
scenario, containing elements of food riots, protest
riots, police riots, and hooliganism. Under this scenario
the crowd phased quickly from a heterogeneous state,
to collective agitation (Figure 5A), then to protest en
masse with ~20 percent of the crowd joining the riot
at its peak after one hour (Table 3). There was a sharp
increase in rioting early in the simulation, as those
individuals who were already aggrieved began to act out
and this outward manifestation spread (as information)
through the crowd at large. The police responded by
arresting rioters, but it took some time to make much
difference (~1.25 hours). After seven hours, the police
gained full control, but only after widespread arrest
(~40 percent of the crowd). As rioters were jailed and
were removed from the crowd, there were fewer free
agents to catalyze further rioting and the crowd shifted
phase back to a quiescent (outward) state that locked
in thereafter, although many of the citizens might still
have felt (internal) hardship.
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Figure 5. (A) The base scenario for the model (agents are endowed with default parameter values and seeded in a plaza-type space). In each
of the line plots that follow, results are reported as averages of ninety-nine runs of the simulation with varying seed locations for agents at
the initial time step. (B) Agent dynamics in the built environment scenario, in which agents are equipped with default parameter values and
placed in a streetscape with urban infrastructure. (C) Agent dynamics in the angry mob scenario, in which the crowd’s feeling of legitimacy
toward authority is reduced to 0.25. (D) Agent dynamics in the mass protest scenario, in which the number of crowd participants is increased
to 5,000. (E) Crowd dynamics under the riot police scenario. (F) Crowd dynamics under the nonengagement scenario.

We evaluated the extent to which like-minded (ri-
oting or nonrioting) agents tended to collocate, by cal-
culating a global (i.e., one value for the entire field
space, per time step) Moran’s I statistic for spatial
autocorrelation (=1 < I < +1; Moran 1950) for ev-
ery second of the simulation over the first hour (after
which volatility diminished; Figure 6). Citizen agents
showed a weak tendency for positive spatial autocor-
relation in activity: Globally, agents tended to clus-

ter in areas with high volumes of rioters or areas with
high volumes of nonrioters. In other words, the crowd
polarized through self-organization from initially het-
erogeneous conditions. This micro-to-macro, mass self-
organization resembles end states of other complex so-
cial models (Sakoda 1971; Schelling 1971), but we can
also consider its dynamics. Autocorrelation increased
rapidly in the early part of the riot and fluctuated
thereafter.
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Table 3. Qualitative model results

Benchmark
Proportion of

Timing of riot ~ Crowd involvement Timing of crowd arrested
Scenarios peak at peak (%) Riot duration Peak duration  restored control (%)
Base 70 minutes 20 6 hours 70 minutes Hour 7 45
Built environment 10 minutes 10 2 hours 25 minutes Hour 2 42
Riot police 60 minutes 5 9 hours 3 hours Hour 10 45
Mass protest 90 minutes 10 8 hours 4 hours Hour 11 45
Angry mob 60 minutes 55 11 hours+ 60 minutes Never 79
Nonengagement 12 hours 27 11 hours+ 11 hours+ Never None
Strategies
Equal treatment 70 minutes 20 6 hours 70 minutes Hour 7 45
Police pursue Rebels 45 minutes 17 5.25 hours 60 minutes Hour 7 42
Police protect Civilians 60 minutes 20 6 hours 90 minutes Hour 7 42
Rebels recruit Civilians 60 minutes 20 5 hours 60 minutes Hour 6 42
Rebels avoid Police 60 minutes 19 6.5 hours 75 minutes Hour 8 45
Battle for Civilians 65 minutes 20 7 hours 75 minutes Hour 8 45
Cat and mouse 50 minutes 14 3.5 hours 75 minutes Hour 4.5 45

We can zoom in on the results to evaluate local
(space—time) patterns of behavior at the scale of in-
dividual agents. This is useful in illustrating how agents
use their geographic abilities and how they interact in
simulation. For example, Figure 7 illustrates how riot-

0.35

0.25

-0.25

ing agents were successful in avoiding law enforcement
in some areas, because they saw the police coming and
were able to veer and run away. In other areas, they
were less successful and resorted to deceptive behavior
by dialing-down outward signs of rioting or physically

Riot time (seconds)

-0.35
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Figure 6. Global spatial clustering of agents of like state-values

in the base scenario. Values of zero indicate no statistically significant

clustering, positive values indicate positive spatial autocorrelation, and negative values indicate negative spatial autocorrelation. After fifteen
minutes of rioting (900 seconds), citizen agents begin to cluster into areas where there are low counts of nearby rebels and areas where there
are high counts of nearby rebels (I = 40.25 & 0.07) and they sustain this pattern for a further forty-five minutes. Agents show no evidence

of global clustering based on hardship or net risk.
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Figure 7. In this illustration, the space—time paths of a subset of the rioting crowd are shown in a portion of the simulated area. This figure
corresponds with the first hour of the simulation portrayed in Figure 5A; X and Z are two dimensions of space; t is a temporal dimension. Local
hotspots and cool spots of riotous activity are evident in the space—time movement of individuals in the crowd. Areas that Police cover well
remain quiet; those that they miss are relatively active in rebellion. (Color figure available online.)

avoiding police to escape apprehension. Figure 7 also
shows the police usefully employing their spatial abil-
ities to evaluate the crowd and to identify, chase, and
apprehend rioters.

Riot dynamics in the built environment scenario
were dramatically different because of the reduced num-
bers of participants and the effect of the built environ-
ment on agent vision and movement (Figures 5B and
8). The riot was comparatively unsuccessful and short-
lived; agents were relatively easily chased and appre-

hended when identified by the Police.

Civilian and Rebel Scenarios

The angry mob scenario was designed to examine
food riots (Taylor 1996), in which individuals have
been building their animosity for some time ahead of as-
sembling in a crowd to demonstrate mass grievance. To

represent this, we seeded agents with lowered feelings
of legitimacy (0.25) instead of the base value (0.82).
The resulting dynamics differed significantly from the
base scenario (Figure 5C). The initial phase shift toward
rioting was dramatic, with 55 percent of the crowd get-
ting involved at its peak. The police responded quickly,
arresting a huge portion of the rioting crowd. Compared
to the base scenario, the decline in rioting and move
toward quiescence was relatively sharp, largely because
the arrest rate was high. The police had to arrest 80
percent of the crowd before gaining full control.

The mass protest scenario was designed to mimic the
sorts of dynamics that might permit rioting to break
out in a very large (5,000 agents) and otherwise law-
abiding crowd, as might occur, for example, during a
political rally (Gillham and Marx 2000). The results
were quite close to the base scenario, despite the influx
of a larger volume of participants (Figure 5D), and the
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reasons for this are quite interesting. The rebellion was
somewhat slower to take hold, but it was longer lasting
(~2.5 hours) than in the base scenario (which lasted
~1.25 hours). The civilian crowd was much larger in
the protest scenario and even though there were more
aggrieved agents to catalyze a riot, there were also a
greater number of riot-averse agents to dampen those
tendencies. In essence, this provided a natural, self-
organized control mechanism within the crowd itself
(Russell, Arms, and Mustonen 1999).

We analyzed the mass protest scenario for local spa-
tial autocorrelation, using a local Moran’s I statistic
(Anselin 1995) on agents’ arrest likelihood. The results
are shown in Figure 9, against a backdrop illustrating
a kernel density—smoothed (Oliver and Webster 1990)
surface of citizen-agent grievance levels per time step.
In the early stages of the simulation, agents were seen
to form statistically significant (at a 99.9 percent con-
fidence interval) local clusters: Agents with low arrest
likelihoods clustered together in space and time (with
statistically significant geography). These low—low clus-
ters contained relatively high grievance levels and were
mostly outside the attention of the small police force on
the scene. This shows the model working appropriately;
the Police only responded to Civilian agents’ outward
signs of rioting. Small clusters of agents with high arrest
likelihoods were also visible, next to Police; the Po-
lice performed a relatively good job of identifying local
outbreaks of rioting and moved to target them. Once a
large-scale riot had taken hold, a few clusters of agents
with low arrest likelihoods appeared, which the Police
were able to efficiently guard. By the second hour, areas
of the space that were well patrolled by Police exhibited
relatively low grievance among citizens. By the eleventh
hour, few riotous clusters remained, and although it still
demonstrated relatively minor levels of grievance, the
crowd remained under relative control. The Police still
needed to patrol some previous hotspots, however, to
ensure that the crowd did not revert to rioting.

Police Scenarios

The scenarios designed to test police behavior in
crowd insurrection events produced significantly differ-
ent dynamics, compared to the base scenario (Table 3).
In the riot police scenario, 200 police were deployed to
the crowd (an increase from fifty in the base scenario),
providing a force-in-numbers response (Waddington
1991). As a result, the riot never really took off. The
initial onset took hold with only a small minority of the
crowd, ~5 percent (Figure 5E; Table 3). Just as rioting

began to spread, the Police (in larger numbers and able
to cover more ground) quickly imposed order, initially
with a handful of arrests.

Under the nonengagement scenario, Police patrolled
the simulated space, without interacting with rioters,
but still influencing the actions of Civilians and Rebels
that they passed. In essence, this represented preven-
tative policing (Waddington 1991). When the Police
saw rioters, they still chased them, but they did not
arrest them. This had the effect of dampening over-
all rioting in the crowd, but the riot, once underway,
was long-lasting and persistent (Figure 5F). The Police
maintained relative order but never fully gained con-
trol. They did, however, avoid mass arrest.

The Influence of Strategy and Tactics

Deploying spatial weights on agents’ perception, cog-
nition, and movement allowed us to study the influ-
ence of geographical tactics and strategies. The equal
treatment strategy is the same as the base scenario al-
ready discussed and Rebels and Police were balanced in

their affective biases (Table 3).

Police-Oriented Strategies. Two police strategies
were explored. The Police invested the majority of their
effort in protecting the civilian population from riot-
ers in the Police protect Civilians scenario. (Rebels
adopted default weighting, balanced in their preference
to avoid the Police and chase Civilians.) This strategy
was less successful for the Police than the base scenario:
The riot peaked earlier, the peak was sustained longer,
and the riot lasted longer than under the equal treat-
ment strategy (Table 3).

Under the Police pursue Rebels strategy, the Police
were designed to be more aggressive in pursuing
rioters than they were in protecting nonrioters. This
proved to be only slightly more useful for the Police
in maintaining order. The initial shift to riot occurred
earlier than in the equal treatment strategy, likely
because the Police were less concerned with protecting
Civilians; this left the crowd freedom (and space) to
riot. The Police gained the upper hand quickly, how-
ever, and they limited rioting to five hours (compared
to seven hours in the base scenario). As with the equal
treatment strategy, full control was achieved by hour
seven and the Police had to jail a large proportion of
the crowd to achieve it (Table 3).

Rebel-Oriented Strategies. Two strategies were
designed to study the influence of sedition. (Weights
for Police were kept at the default, balanced between
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agents and from 1,000 to 285 non-Police agents for the built environment scenario. For illustration purposes only, Jailed agents are shown at
the location where they were arrested; Jailed agents are removed from the space immediately on apprehension in simulation. (Color figure

available online.)

chasing rioters and protecting nonrioters.) Under the
Rebels recruit Civilians strategy, Rebels were biased
toward pursuing Civilians in a bid to further foment
rioting (at the expense of avoiding apprehension by the
Police). This strategy was not particularly effective for
the Rebels: They did not recruit more Civilians than
they would have under the equal treatment strategy and
they did not evade capture particularly well (Table 3).
The Rebels sought out new recruits, but in doing so they
exposed themselves to arrest.

Under the Rebels avoid Police strategy, riotous
agents adopted covert behavior, still seeking out new
recruits but avoiding the Police more strongly than in
the equal treatment strategy. This was slightly more ef-
fective for the Rebels, particularly in the early stages of
the riot: They reached peak rioting sooner than in the
base strategy and they managed to sustain the riot for
an extra hour (Table 3). To some extent, the cards are
always stacked against the Rebels, as the Police can re-
move them from the riot. The Rebels, of course, cannot
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oust Police. This is a realistic depiction of the relative
power balance in riotous crowds.

Conflicting Strategies. The two final strategic sce-
narios were designed to explore crowd dynamics under
conflicting strategies between Police and Rebels. Under
the battle for civilians strategy, both Rebels and Police
adopted strategic behavior to seek out nonrioters in
the crowd. In the case of the Police, their motive was
to protect Civilians, whereas the Rebels tried to recruit
Civilians to riot. This strategy was only slightly less suc-
cessful for the Rebels than the base strategy (Table 3).

Under the cat-and-mouse strategy, the Police and
Rebels devoted the majority of their attention to each
other, paying comparatively little attention to the
Civilian population (except that Rebels could lose
themselves in nonrioting portions of the crowd to avoid
detection). The Police and Rebels essentially played a
game of chase under this scenario. The Police played
the game very well and the results were relatively disas-
trous for the Rebels. The Rebels only catalyzed a small
riot, which halted quite quickly. The Police managed
to restore full order within 4.5 hours (Table 3).

Conclusions

Riots are difficult to experiment with tangibly or us-
ing standard social science analyses. One alternative
might be to use modeling and simulation to explore riots
synthetically. Several riot models have been developed,
but existing approaches have emphasized abstract rep-
resentation of riot phenomena and processes that limit
the range of questions that can be posed in simulation.
We have presented an alternative scheme that expands
the abilities of models to synthesize riots by using a
polyspatial, agent-based architecture that can accom-
modate rich behavioral detail at process scales from the
individual to the crowd. We believe that this approach
is quite novel and useful.

Methodological Innovation

Our scheme introduces significant methodological
innovation. Our attention to detail is much more care-
ful than in standard approaches, so that a richer set of
process dynamics can be represented, at the character-
istic and atomic timing and spacing of riot phenomena.
This allows us to better tailor simulations to real-world
scenarios and it facilitates a wider range of inquiry
with the model than is usually achieved in existing,
abstract approaches. This achievement is important:

Many agent-based models advertise their ability to map
individuals to macro-outcomes, but coarse and abstract
representation of behavioral agency is usually the norm.
Many agent-based models simply use existing macro-
equations on agents (Batty and Torrens 2005). This
rather defeats the purpose of building individual-based
models and it has led many authors to rightfully crit-
icize the methodology quite consistently (Faith 1998;
Torrens and O’Sullivan 2001; Couclelis 2002; Clifford
2008), but very little is commonly done to challenge
this critique. Our approach is distinct: We embrace de-
tailed behavior in simulation.

Another long-standing problem with agent-based
models is the prevalence of anemic geographic func-
tionality (Torrens 2010a). Geography is generally
considered as an afterthought, with spatial dynamics
implied from visual output, despite the fact that
geography might have received only cursory treat-
ment in the actual model (]J. Epstein 2002). This is
surprising, as agent-based models can support rather
sophisticated geographical algorithms and processes
(Benenson and Torrens 2004). Although there is a
rather consistent dialogue in the theoretical literature
about the significance of geography in riot dynamics,
our model is among the first serious attempts to tackle
geography in riot simulation. This alone is novel and,
as we discuss later, it turns out to be quite valuable.

Our approach can also extend (and deepen) exist-
ing socioemotional agency with geographic wrappers
that provide added geographic functionality (vision,
steering, movement, neighbor inquiry, vector resolu-
tion, collision detection and avoidance, affective bi-
asing) and second-order space—time processes (spatial
interaction, diffusion, scaling, clustering, segregation,
polarization, chasing, and avoidance). We achieved this
in a way that retained existing social agency faithfully
but enabled it spatially. This sort of model docking is
a topic of avid interest in the agent-based simulation
community (Torrens and Benenson 2005; Rank 2010);
although this is not the central topic of this article, our
example does show how such docking can be achieved
for computational social science applications.

We embedded the modeling and simulation compo-
nents of the work in a unified pipeline that also in-
cluded spatial analysis, spatial statistics, geostatistics,
and geovisualization for sweeping the parameter space
and results of simulations. This goes far beyond the usual
approach, which relies on simple plots of model param-
eters over time and descriptive multivariate statistics.
Standard approaches usually lack potency anyway, be-
cause coarse, aggregate measures are commonly used to
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examine individually specified models. In a sense, this
muddies much of the underlying detail, unless macro-
outcomes are known a priori and deliberately sought out
in analysis (which is difficult for riot simulation, where
the whole point of modeling is to seek out such things
in the first place).

Substantive Findings

We touted the potential advantages of our model as
an experimental laboratory for studying rioting. So it
is fair to ask what we actually learned about rioting in
simulation.

The Role of Geography. A long-standing critique
of agent-based modeling centers on “unwrapping” (Hol-
land 1995, 137)—the practice of building results di-
rectly into model design only to rediscover them in sim-
ulation. We deliberately built geographic features into
our model but to provide the functionality for dynamic
interplay of the features in simulation. This is different
than baking in outcomes. Any substantive findings that
the model generates are therefore authentic (within the
parameters of the simulation).

The processes that drive riotous crowds are some-
times distinct at different scales, and our model shows
how they can connect, inexorably, through geography.
Theory suggests—and our simulations show—that the
actions of a handful of individuals can, in some condi-
tions, shape the dynamics of an entire crowd, whereas
in others the actions of the few are diluted by those
of the many. Our model allows processes to jump scale
barriers, because the agents that create and propagate
those processes are polyspatial. In particular, they can
react to information channels at diverse scales. For some
situations, scaling allows individuals to be teased into
rioting under the perceived protection of the group at
local geographies. In the reverse direction, seditious be-
havior at local geography or at an individual level can
be dampened by ambient quiescence in a large crowd.
Temporal scaling is also important to understanding
rioting. A charged crowd can shift phases from rela-
tive quiescence to sedition in just a few minutes. Our
simulations show how small changes in initial condi-
tions and behavior catalyze these shifts dynamically.
The ability of agents to dip into and process informa-
tion (whether real, imagined, or wrong) at different
scales provides the mechanics for emergence, feedback,
self-organization, and allometry. This implies that spa-
tially nonmodifiable units on which the finest scale of
the simulation is built (and their assembly into coarser

process building blocks) are critical in representing riots
appropriately, as is their assembly into coarser building
blocks for riot processes. Ideally, atoms would represent
individuals and would facilitate construction of real-
istic behavior that allows them to bridge scales. This
seems difficult to achieve without realistic treatment of
geographic behavior.

This leads us then to the role of geographic behavior
in determining rioting. By representing behavior explic-
itly (not abstractly), our model can show how agents’
use of geographic information and their spatial think-
ing can shape riot dynamics. We have demonstrated
this specifically by playing with different configurations
of characteristics and strategies. By giving agents geo-
graphic behavior, agency becomes less viscous in crowd
dynamics than it might without, because agency is mo-
bilized and interpreted in, or exposed to, different times,
places, contexts, and company. Mobility also allows the
conduits for information exchange between simulated
entities to shift and change form, as can the inputs
to individual agents’ mental maps. Here, there are ob-
vious parallels with the real world, where information
exchange courses through crowds rapidly, differentially,
and dynamically. Agents need to be mobile—in their
activities, actions, reactions, and interactions—to be
realistic in riot models. These dynamics are difficult to
represent authentically in cell-based models that rely on
abstract movement proxies. In CA, for example, agent
cells must languish in situ and wait for information to
find them and wash over them, rather than proactively
seeking out (or avoiding) information in the environ-
ment (Torrens 2010a). There are other pitfalls in re-
lying on proxies of movement, in particular, because
observed effects in models could derive from artifacts
of the proxy, rather than having an analog in theory
or real-world phenomena. This problem has been doc-
umented for computational automata (Faith 1998) but
is perhaps relevant across much of computational social
science, as others have noted (J. Epstein 2007).

Physical geography is also significant. Moving a
crowd from an open plaza setting to a walled (urban)
space had dramatic effects, because it altered the sup-
ply of information to agents’ geographic behavior. Our
experiments with built environments were relatively
abstract and the topic warrants further investigation,
particularly into the extent to which physical and hu-
man geography codetermine riot dynamics.

Exploring Existing Riot Theory in Silico. Our
main preoccupation in modeling was with geographic
behavior, but we included several popular social science
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theories of rioting in our model, which we can hesitantly
examine. For example, we considered threshold models
for collective behavior. The threshold theory suggests
that a domino or bandwagon effect might explain the
spread of riotous activity within a crowd (Granovetter
1978), that once some target level of participation has
been reached, people who would otherwise feel hesi-
tant to act out might feel free to do so because the
collective costs of their actions are reduced in aggre-
gate. We built thresholds directly into the individual
behavior of our agents by specifying legitimacy and
hardship states per agent. The geographic behavior of
agents then allowed thresholds to be animated locally
through the activation rule and subsequently propelled
at a distance by secondary geographic processes. Under
certain scenarios and strategies, Rebel agents’ proac-
tive geographic behavior also allowed them to seek out
nonrioters to seduce to the riot, which could catalyze
or maintain some locally safe threshold for acting out.
In this way, then, agents put the threshold model into
proactive use. This differs considerably from Granovet-
ter’s (1978) original probabilistic/equilibrium formula-
tion of the idea, as well as subsequent mathematical
implementations (Granovetter and Soong 1983). The
implications of this extension to the threshold model
are significant. A much richer understanding of the gen-
esis and formation and propagation of threshold effects
can be garnered within the crowd. This understanding
is distinct from the sorts of explanations usually used to
account for generated macrostructures, which are com-
monly attributed to abstract notions of emergence (see
J. Epstein 2002, or even Schelling 1971). In contrast,
our formulation shows how threshold effects can gener-
ate local (or macroscale) clusters that bubble up, merge,
starve for new recruits, expand, disappear and reappear
in space and time, and so on. In essence, the threshold
phenomenon is much more fluid because the effect is
geographic.

The role of information is discussed prominently in
the literature (Wright 1978; McPhail and Wohlstein
1983; Rheingold 2002), but it is rarely treated in mod-
els. Our simulations show that information is critical in
determining interactions within crowds and we are able
to show how information exchange can influence the
larger crowd mosaic. Our scenarios demonstrate how
the trade of nonverbal information can alter riot dy-
namics, for example, through outward expression (e.g.,
grievance), locomotion (police chasing bellicose riot-
ers), or spatial interaction (clustering and colocation
in space and time). These examples are important in
showing how geography can foster dynamism in infor-

mation. Some effects in crowds might start out as non-
spatial but might become mobilized by diffusion (e.g.,
affect); some might be explicitly geographical (e.g.,
locomotion); and others might play out through dy-
namically malleable and scalable space—time structures
(e.g., clusters). Our simulations show that the qual-
ity of information is also important. Individual agents
often have incomplete access to information, particu-
larly in densely packed crowds where their information
might be limited to small-scale shifts in immediate con-
ditions around them, and their spatial cognition might
be bounded. Misinformation could be equally impor-
tant. Seditious actors in a crowd might seek to delib-
erately manipulate the flow (a geographic process) of
information to their needs (Prentice-Dunn and Rogers
1982), as when rioting agents in our simulations turned
to deception near police. The police can similarly in-
tervene in information exchange through the crowd, by
falsely projecting force, for example.

The role of collective behavior in riotous crowds
is also a significant subject in the theoretical liter-
ature (McPhail and Wohlstein 1983). Although our
agents deployed strategies to determine their interac-
tions relative to each other in simulation, they were
not given explicit rules for collaboration; that is, each
agent within a given role acted independently. Yet, col-
lective space—time patterns did emerge in simulation,
with clearly forming hotspots and cool spots of activity
(and emotion), for example. There is perhaps a peda-
gogical lesson here: Much collective behavior can be
happenstance, a product of a natural sorting and shuf-
fling of the crowd. As other researchers have shown, this
can happen even with small impulses amid a handful of
local interactions (Schelling 1971).

The idea of a crowd mentality is a controversial hy-
pothesis that is sometimes discussed when considering
rioting: the notion that a riotous crowd might act with
some sort of pack-like behavior, ceding their individu-
ality to a collective norm. Although it has long been
understood to be erroneous (Couch 1968), the idea
still persists (Schweingruber and Wohlstein 2005). Our
model can help to explain why the notion of crowd
mentality is problematic. Interpretation is one reason:
Descriptive plots of riot dynamics (Figure 5) might im-
ply homogeneity in the crowd, but spatial analysis shows
that heterogeneous geographies of clustering manifest
beneath this aggregate pattern. This is what McPhail
(2008) has referred to as the “crowd as patchwork.”
Even when agents in our scenarios were seeded with
the same initial parameters and transition rules, the in-
formational ingredients to their decision making were
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variable because they were polled from local surround-
ings, which were constantly in a state of spatiotempo-
ral flux (because agents moved, others moved around
them, or information metamorphosed as it spread). In
essence, the informational currency for interaction be-
tween crowd members is always changing and so, even
when given similar predispositions, behavioral response
is not fixed in space or time (Granovetter 1978).

Ideas about complexity permeate all of these
discussions. Because riots scale from individual
action—reaction dynamics to (and within) the larger
social and built substrate of the ambient environment,
they often manifest as complex adaptive systems. In-
deed, we identified some signature characteristics of
complex systems in our simulations: emergence, self-
organization, phase shifts, positive (escalation) and
negative feedback (calming), and path dependency.
Clearly, understanding the complex adaptive properties
of riots is important in understanding the phenomenon.
This is a topic that has not received much attention in
the literature, even though it is actively studied for other
crowd phenomena (Vicsek 2003).

To the extent that our model can be relied on as a suf-
ficient analog for riots in the real world (and we make
no warranties in this regard; we consider the model
as a computational laboratory for testing phenomena
in which ground truth that might “verify” the model’s
match to a particular riot is almost impossible to attain),
the scenarios that we simulated provide some practical
lessons for managing riotous crowds. The various strate-
gic scenarios for policing show, for example, that a mass
police presence might be counterproductive to calm-
ing potential sedition (Waddington 1991). Also, police
can project force quite effectively without having to
actually use force (Prati and Pietrantoni 2009). Also,
recognizing shifting patterns in the information that a
crowd exudes—particularly signatures of individual and
collective behavior in space and time—and reacting ap-
propriately and in a timely manner could be useful in
managing a crowd on the brink of sedition or calming
riotous crowds to more quiescent end states. Deliber-
ately introducing, modifying, or blocking information
diffusion could also be important.

Current Limitations and Future Avenues for
Research

Rioting is a highly variable phenomenon, with many
possible ingredients. Our model, like all models, is an
abstraction of reality. We have strived to make it less
abstract than existing models, but some features are

missing. First, our portrayal of roles in rioting was lim-
ited to four types of protagonists. This is useful in ex-
amining some of the prevalent agencies considered in
rioting, but it is perhaps stereotypical, representing as K.
Epstein and Iveson (2009, 271) remarked, “a binary dis-
tinction between the ‘virtuous’ urban citizen (in need
of protection) and the ‘unruly’ protester (from whom
the virtuous citizens needed protection).” An extended
model could add additional agents: agent-provocateurs,
hooligans, instigators, riot and nonriot police, and so
on. There is nothing in the architecture of the model
that prevents the addition of more agents or agency, but
this would be a time-consuming undertaking.

Second, our built environment scenario was quite
simplistic and did not fully reference the available
wisdom regarding rioters’ use of urban infrastructure
(Newman 1972, 1996). The relationship between
behavioral geography and the built environment is
the topic of a separate thread of research that we are
actively engaged in, and we hope to build bridges
between that work and our riot model in the future.

Third, we have not accounted for the role of social
networks in rioting. The connection between social
networks and space is a topic of relatively recent in-
vestigation in the literature and relatively little work
has been done on this in computational social science
(Butts 2009; Torrens 2010b). Dibble has made signif-
icant inroads into exploring these issues (Dibble and
Feldman 2004) but at a much coarser scale than our
model has considered. It is potentially a quite valu-
able avenue for future inquiry and, again, our modeling
framework does not preclude it from being incorporated.

Fourth, we could represent information more
explicitly in the model, either through vocal exchanges
between rioters and police in simulation or by modeling
the influence of mobile Internet and communications
technologies in riot dynamics (Rheingold 2002). The
role of body language and gait in crowd dynamics is
something that we are examining in other models we
have built, using full-body motion capture data, for
example (Figure 10). This would be of clear value
(Scheflen 1972) if incorporated into the scheme that
we introduced in this article.

Fifth, our pipeline presents an interactive toolkit for
experimenting with riot dynamics, but we are the main
beneficiaries of its use. We could broaden the user base
to “serious gaming” (Barnes, Encarnagdo, and Shaw
2009) about rioting by other researchers, police, stu-
dents, or other stakeholders, for example. We are de-
veloping an immersive version of the model that allows
users to control (and move) characters as avatars in
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Figure 10. A screen shot from a prototyped immersive version of our riot simulation. Users can “drop into” the riot as avatars and move
through the environment to experience a simulated riot vicariously. (Color figure available online.)

simulation (Figure 10), but extending this for action-
able decision support will take further work.

Sixth, we did not deal with riot precursors. These
could be added to our pipeline, however, in a metasim-
ulation that would also include city-level dynamics.
We have experimented with coupling agent-based mod-
els and more systems-oriented simulation architectures
(input—output models, equation-free modeling, coarse
projective integration, animation), but the sorts of mod-
els required to simulate city-wide, neighborhood-level,
or perhaps even national target selection would likely
require much more involved consideration, because of
the large range of intrasystem interactions that could
serve as drivers (see work by DiPasquale and Glaeser
[1998] on the economics of rioting, for example).

Seventh, we have largely sidestepped the issue of cal-
ibrating or validating the model to known conditions
on the ground, primarily because of the difficulties in ac-

quiring “knowns” that we outlined earlier. Our model
is informed by appropriate theory and this is actually
quite innovative. Clearly, though, we need to do more
to match the model and simulations to reality. Or, alter-
natively, the model could be used to “hindcast” about
known riot events, with the view of providing oppor-
tunities for future lessons to be learned. This could be
attempted with adequate data. Automata are almost in-
finitely extensible (Turing 1936) and our scheme does
not constrain the amount of reality that can be intro-
duced to the model. Building that know-how is difficult,
although we think that our model can help.
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