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1. Introduction

The rapid uptake in the use of urban simulation since the 1960s (Batty 1976) to explore
urban phenomena and to project potential urban futures has resulted in the extension of
much urban research to silicon substrates of synthetically-derived cities, particularly for
city systems that are difficult to study on the ground (Benenson and Torrens 2004, Batty
2005). This is true for suburban sprawl, a phenomenon that has received widespread re-
cent attention because of concerns regarding the sustainability of sprawling cities (Ewing
et al. 2003, Song and Knaap 2004, Sultana and Weber 2007) and debate regarding what
the causes and consequences of sprawl might be (Torrens 2008). Agent-based models
(ABMs) have become increasingly popular as tools for simulating sprawl (Brown et al.

2003, Sanders et al. 1997, Wu 1998, Parker et al. 2003, Batty et al. 2007, Loibl et al. 2007),
because of their flexibility in representing an almost limitless variety of phenomena and
systems. Among their advertised advantages, ABM-builders often tout the ability of their
tools to simulate complex dynamic systems and related phenomena that defy easy analy-
sis by more traditional forms or academic inquiry or using existing modeling approaches
(Batty 2005). Because urban ABMs often rely on fine-grain geographic data, because
they scale from local to global geographies, and because their applications delve into the
non-linearity of complex coupled systems, the treatment of emergence in simulation is
often crucial to their success, particularly when system-level phenomena rely on intra-
system agents for their dynamics. Furthermore, urban ABMs often use large numbers of
synthetic agents in simulation and treat the details of their many-to-many interactions,
and many simulations require frequent reparameterizations and repetitive runs to sta-
bilize. This becomes inefficient for simulations with large numbers of agents and it can
be computationally-exhaustive for models with many types of agent behavior, leading to
unwieldy and computationally-intensive simulations that require high-performance com-
puting to run (Bandini et al. 2001). These difficulties have become manifest at a time
when ABMs are being advertised as a planning and decision support tool for many urban
applications, specifically because of their ability to trace indelible paths from the micro-
cosm of urban systems to macroscopic outcomes such as sprawl (Torrens 2002). New
schemes for (1) handling emergence, and (2) managing the computability of ABMs are
required to advance applied urban simulation for these uses. In this paper we introduce
methods to improve the ability of ABMs to answer both challenges. We will demonstrate
how a metasimulation infrastructure can be built to transform the way that information
can be extracted from the “best available”, detailed, individual-based computer model
that a scientist can write for a given scenario and in the process we will show that the
scheme can be used to leverage emergence in simulation for accelerating agent-based
computation. We will demonstrate the usefulness of our approach with application to an
ABM of suburban sprawl: a phenomenon with particularly thorny complexity.

Our idea is to circumvent the derivation of macroscopic, population-level equations
by using fine-scale ABM code as an experiment within a larger simulation metasystem.
Normally, we would simply run this experiment forward in time and observe its results;
indeed, this characterizes much of the existing state of the art (Benenson and Torrens
2004). Instead, we are proposing something different. We wish not just to simulate a
model by advancing it in time, but also to interrogate the simulation intelligently, ex-
ploiting the premise that some coarse-scale (emergent) system property exists, even if
we do not have the macroscopic equations on hand for it in closed form. Essentially, our
scheme seeks to address (when a good set of macroscopic, population-level system observ-
ables are known) how to design new, informed experiments to obtain information about
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system emergence based on specifically-chosen values of those local observables. This is
achieved by creating a set of mathematics-assisted computational superstructures that
are “wrapped around” a given ABM. The wrapper allows the extraction of broad-scale,
system-level information – easier, faster, better – than existing techniques will currently
permit. This information may be extracted from the simulations themselves, even when
meaningful, coarse-grained, macroscopic variables (observables) of the individual-based
ABM are not available a priori ; indeed, one can study how to build agent-based compu-
tational experiments to detect locally-good coarse coordinates that efficiently represent
the salient features of a simulation.

While direct agent-based simulation can be feasibly employed to study urban sprawl,
the total simulation time in traditional approaches may pose a challenging disadvantage
when one needs to investigate the system-level information for many interacting entities
of the urban sprawl process; this quite often requires a large Monte-Carlo ensemble of sim-
ulation runs to resolve. Of course, high-performance and parallel computing techniques
using a Message Passing Interface (MPI) (Gropp et al. 1996) or employing many-core
Graphics Processing Units (GPUs) (Galvao et al. 2008) may be used to enhance com-
puting speed, but it would be useful to also provide an effective, accelerated modeling
technique to increase efficiency on the algorithm/software side. Indeed, this paper con-
tains a representative illustration of such an algorithm. Specifically, we will introduce
a scheme to solve explicit macroscopic equations without deriving them in closed form;
this is the so-called equation-free approach (Theodoropoulos et al. 2000, Kevrekidis et al.

2003, 2004), and we will present a particular equation-free algorithm: coarse projective
integration. We will contrast this (and the direct ABM simulation) with the simulation of
explicit macroscopic equations (with or without the need of some precomputation) when
such explicit equations are available. These tasks will be illustrated using an existing
ABM (Torrens 2006).

The paper is organized as follows. We discuss related work in Section 2. In Section 3
we provide an overview of the simulation models for urban sprawl that will be used in
this work. Explicit equations of agent population profiles for different models are derived
in Section 4. Application of coarse projective integration as a numerical acceleration
method, to urban sprawl simulation is introduced in Section 5. Numerical experiments
comparing solutions from the direct simulation, explicit equations, and coarse projective
integration are detailed in Section 6, before drawing conclusions in Section 7.

2. Related Work

It has traditionally been difficult to capture and measure emergence in complex urban
phenomena in anything but abstract terms (for example, discovery that city-systems
are fractal (Batty and Longley 1994) or that they are scale-free (Batty 2008)), but the
current popularity of using ABMs to model cities has forced the issue, largely because of
a common reliance upon emergence in ABMs to associate agent actions and interactions
between diverse phenomena and scales (Epstein 1999). Recent approaches to extract
complexity signatures from models have provided more concrete metrics of emergence,
but the procedures used generally focus on the end-condition of a model (rather than
its complete trajectory through simulation) and rely on reasonably well-characterized
primitives as a template for matching the model to the real-world, based on self-similarity
(Xie 1996), space-filling (Ward et al. 2000b), fractal dimension (Batty 2005), spatial
autocorrelation (Wu 1998), landscape metrics of state configuration and composition
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(Herold et al. 2005), and fuzzy pattern-matching to known maps or satellite data (Power
et al. 2000), for example. However, a crucial issue remains unaddressed in these cases:
while useful, these techniques are not capable of treating the emergence of novelty.

Other approaches use brute-force schemes to exhaustively sweep the parameter-space
(Couclelis 1997) of a model by running simulations for many different permutations and
combinations of parameter values (Li and Yeh 2000). This follows efforts in mathematics
and computer science to explore the complete space of possibilities for particular classes
of automata, in an effort to derive universal laws for various phenomena (Wolfram 2002).
The idea is that if such laws were understood, the end-state of a given system could be
predicted given any parameterization of the system. City systems are formidably more
complicated, messy, complex, and even chaotic than many systems explored in computer
science, however, and it is possible that a search for universality is a futile proposition
in these cases (Wolfram 1984, Batty and Torrens 2005). Exhaustively sweeping detailed
models is time-consuming and can generate massive volumes of results to be evaluated,
and so brute-force techniques of this kind usually rely on some averaging procedure, which
smoothes results (Clarke et al. 1997, Goldstein et al. 2004). However, the smoothing
could, potentially, mask novelty or subtleties in emergence.

In other approaches, perturbation is used to artificially “wiggle” a model into new
trajectories. This can be random, or it can be based on some rules. The SLEUTH model,
for example, links changes in model parameters dynamically to evolving growth condi-
tions in simulation (Clarke et al. 2007). Self-modifying rules are used to accelerate or
dampen growth in a model if particular benchmarks are reached. In effect, this is used as
a mechanism to calibrate a model to historical urban scenarios, but it could feasibly be
related to emergence. Again, this requires that sensible rules or meaningful benchmarks
be available a priori . Andersson and colleagues (Andersson et al. 2002) developed an
interesting variation on this scheme to account for distinct phase transitions in simula-
tion. It is unlikely that cities evolve to neat steady-state conditions in this way, but the
approach is particularly innovative. A different strategy is used in geographic models in
social science, whereby genetic algorithms are employed to mutate models as they evolve
(Epstein and Axtell 1996). Usually, the mutations that bubble forth are then detected
using techniques from multivariate statistics (cluster analysis, principal components anal-
ysis). This approach relies on requirements for volumes of essentially blind trial-and-error
computation and any stopping rules that are invoked tend to be borrowed from genetics
(Axelrod 1997) with little consideration of their inconsonance for social science phenom-
ena. Batty and colleagues (Batty et al. 1999) have experimented with this approach in
simple physics-oriented urban growth models.

Our approach is relatively distinct. Rather than averaging many long model runs or
repeating numerous simulations with varying parameters, we run ABMs as local, short -
burst experiments within a metasimulation framework. This framework makes it possible
for us to use many scientific computation algorithms from traditional, continuum numer-
ical analysis to perform tasks such as numerical integration in time, fixed point compu-
tations, stability and parametric analysis and more. Accelerated simulation (through
coarse projective integration) will be demonstrated here in terms of expected values of
the agent population density. Time derivatives of these “coarse variables” are estimated
on the fly and repeatedly used to extrapolate them in the time domain, resulting in more
efficient computing than the direct (ABM) simulation.
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3. Agent-Based Drivers of Suburban Sprawl

In this section we describe the formulation of our scheme, using as our illustrative ex-
ample a sprawl ABM developed in Torrens (2006). Note, however, that the procedure is
general enough that it could be realistically “wrapped around” any ABM. In our illustra-
tive ABM, the dynamics of sprawl through urbanization, urban growth, and population
dynamics are mainly driven by exogenous sources, endogenous change, and mobilization
of agents. The implementation of each of these drivers in the simulation will be described
in detail in the following subsections.

3.1. Exogenous sources

Exogenous change of the agents is imposed in the urban sprawl simulation at a
macrolevel. External agents are additively infused into the city domain typically at some
fixed gateways. (These are synonymous with historical portals for immigrants, or existing
settlements with some spatial advantage or geographical inertia.) The rate of exogenous
change is determined either by user definition or through historical US census data on
urban population growth (records of which are available since the eighteenth century).
The volume of external agents, Dn(x, y), and the agent population, Pn(x, y), at a discrete
time instant tn determine the population at time tn+1:

Pn+1(x, y) = Pn(x, y) + Dn(x, y). (1)

Here (x, y) is an integer-numbered coordinate on a 2D spatial grid. The population
Pn+1(x, y) will also be subject to modification due to endogenous change and movement
of agents. This effect will be discussed in the following sections.

3.2. Endogenous change

Urban population dynamics involve a balance between migration effects and natural
(crude) growth and decline. In the model this is implemented through internal changes
such as immigration (im) of population to a land location (x, y), emigration (em), the
birth rate (b), and the death rate (d):

Pn+1(x, y) = Pn(x, y)δn(x, y), (2)

where δn(x, y) is a linear combination of internal change rates: δn(x, y) = imn(x, y) −
emn(x, y) + bn(x, y) − dn(x, y).

3.3. Agent movement

The movement of agents (considered as migration of population through residential re-
location) can also be viewed as a mapping from time tn to tn+1, i.e.,

Sn+1 = Π(Sn), (3)

where Sn is the location of an agent at time tn in a 2D spatial grid. The operator Π may
consist of m(≥ 1) movement steps which follow prescribed (deterministic or stochastic)
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rules. The resulting intermediate locations of an agent between tn and tn+1 will then
be denoted as Sn (i.e., Sn,0), Sn,1, Sn,2, ..., Sn,m−1, Sn+1 (i.e., Sn,m). In Torrens (2006)
five rules for mobilizing agents are suggested which include leap-frog, immediate, nearby,

irregular, and road-like movement. Details of these rules are described below.

3.3.1. Leap-frog movement

In this movement rule, agents perform a random walk in a Moore neighborhood of
size Nm between two successive intermediate locations Sn,k and Sn,k+1 (Fig. 1 (a)). This
represents growth by speculative development, ahead of an existing urban mass (Benguigi
et al. 2001).

3.3.2. Immediate movement

Between the two time steps tn and tn+1, an agent randomly chooses a neighboring grid
cell to locate itself and then circulates around the (size 1) Moore neighborhood of its
original position for m− 1 steps (Fig. 1 (b)). This represents growth by accretion (Batty
1991).

3.3.3. Nearby movement

Here agents circulate around the Moore neighborhood (of size 2) of their original posi-
tion at tn. Specifically, they first move around an inner ring (Size 1 Moore neighborhood)
as in the immediate movement rule; then, if the number of intermediate steps m is larger
than 8, the agent will randomly choose a neighboring cell within a distance of

√
2 in the

outer cell ring, and continue moving around this outer ring for m − 8 steps (Fig. 1 (c)).
This represents intra-urban growth by in-filling (Yeh and Li 2000).

3.3.4. Irregular movement

The irregular movement rule mobilizes an agent at lattice position Sn,k to a cell Sn,k+1

in the Size 1 Moore neighborhood of Sn,k. The cell Sn,k+1 is randomly chosen, so that
the distance between Sn,k+1 and Sn is no less than the distance between Sn,k and Sn

(Fig. 1 (d)). This represents growth that is constrained by natural features (Ward et al.

2000a).

3.3.5. Road-like movement

For a given grid cell, a path starting at the cell is first “paved” following the irregular
rule. At each cell along the path we assign a weight which is inversely proportional to
the distance between the cell and the starting cell. All agents located at the starting cell
are then deposited at cells along the path using the Roulette Wheel selection algorithm
(Goldberg and Deb 1991) (Fig. 1 (e)). In this manner, a cell with a large weight will have
on average more agents standing on it than a cell with a small weight. This represents
growth along road and other transportation corridors (Hoyt 1964).

The population distribution will dynamically evolve as agents move. Clearly, we can
evolve the ABM and observe the evolution at a coarse-grained, population (as opposed
to individual agent) level; the coarse-graining could involve averaging over spatial neigh-
borhoods, over temporal periods, and –even– over several sample path simulations (for
stochastic rules). A vital question then arises: is it possible to derive (based on the
detailed, individual-based, rules) a macroscopic equation in terms of the agent number
density only? That is, can we derive an equation that, given only the instantaneous agent
number density profile, can be used to predict its evolution in the future? One perceives
here an analogy between atomistic simulations (e.g., molecular dynamics simulations of
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(a) (b)

(c) (d)

(e)

Figure 1. Agent movement rules. (a) Leap-frog rule; (b) Immediate rule; (c) Nearby rule; (d)
Irregular rule; (e) Road-like rule.

fluid flow) and traditional continuum numerical models (e.g., the Navier-Stokes equations
for the macroscopic evolution of density and momentum fields in a flow). For interacting

agent simulations, the derivation of accurate continuum, explicit macroscopic equations
is the exception rather than the rule. The agents in our illustrative example, however, are
noninteracting, and one may expect that the ensemble average (over several simulation
realizations) of the population profile, P (x, y), over the 2D grid could satisfy an explicit
evolution equation that will take into account all the three effects for population change
and growth that were just mentioned:

Pn+1(x, y) = Φ(Pn(p, q), Dn(p, q), δn(p, q); p ∈ I[−∞,∞], q ∈ I[−∞,∞]), (4)

Here p and q are traversed by the operator Φ over the integer-number domain I[−∞,∞]
over which the expected profile Pn+1(x, y) is to be calculated.

4. Equations for Agent Populations

Equation-free computational techniques are designed for cases where explicit macro-
scopic equations conceptually exist but are not available in closed form. In some of our
illustrative examples such macroscopic, population-level equations can be explicitly ana-

lytically derived; in other cases they can be explicitly derived, but certain terms in their
right-hand-side must be obtained numerically through pre-computation. Having such
population-level equations (whether analytically derivable, or obtained through precom-
putation) allows us to compare the results of the full ABM simulation to those of the
macroscopic equations as well as to those of our equation-free approach, for validation



November 12, 2010 23:48 International Journal of Geographical Information Science urbansprawl

8

purposes.
A population-level equation Eqn. (4) can indeed be explicitly derived by computing

the migrating probability of agents moving into and out of a grid cell. In our case, Eqn.
(4) would read

Pn+1(x, y) = δn(x, y)(Pn(x, y) + Dn(x, y)) − δn(x, y)(Pn(x, y) + Dn(x, y))ηo(x, y)

+ Σ(p,q)∈MNm(x,y),(p,q)6=(x,y)δn(p, q)(Pn(p, q) + Dn(p, q))ηi,(x,y)(p, q), (5)

where MNm
(x, y) is the Moore neighborhood of (x, y) with size Nm. ηo(x, y) stands for

the move-out probability at (x, y) and ηi,(x,y)(p, q) the move-in probability from (p, q) to
(x, y). The difference ηi,(x,y)(x, y) = 1− ηo(x, y) is the probability that an agent remains
in its original position. Eqn. (5) is thus rewritten as follows:

Pn+1(x, y) = Σ(p,q)∈MNm(x,y)δn(p, q)(Pn(p, q) + Dn(p, q))ηi,(x,y)(p, q). (6)

If no boundary or barriers occur, ηi,(x,y)(p, q) is homogeneous with respect to (x, y).
Furthermore, ηi,(x,y)(p, q) = ηi,(p,q)(x, y) due to symmetry. However, if boundaries or
barriers exist in an urban region, ηi,(x,y)(p, q) will be non-uniform, and it may require
prohibitively expensive computation to accurately precompute this migrating probability
for every grid point in the simulation domain. In what follows, analytical as well as
numerical derivation of the migrating probabilities for the five agent movement rules will
be discussed for simulation without boundaries or barriers.

For simple movement rules like leap-frog, immediate, and nearby, the probabilities
ηi,(x,y)(p, q), (p, q) ∈ MNm

(x, y) can be analytically obtained. In particular, for the leap-

frog rule, since an agent has equal probability to move to any cell of its size Nm Moore
neighborhood between two intermediate steps (n, k) and (n, k+1), an analytical equation
for population profiles is available to link Pn,k(x, y) and Pn,k+1(x, y), i.e.,

Pn,k+1(x, y) = Σ(p,q)∈MNm(x,y)δn,k(p, q)(Pn,k(p, q) + Dn,k(p, q))ηi,(x,y)(p, q), (7)

where ηi,(x,y)(x, y) = 0 and ηi,(x,y)(p, q) = 1/((2Nm + 1)2 − 1) for any (p, q) ∈ MNm
(x, y)

and (p, q) 6= (x, y).
In the immediate rule, an agent has equal probability to move to any cell of its size

1 Moore neighborhood in m intermediate steps between time tn and tn+1; thus Eqn.
(6) is a valid analytical equation for this rule where Nm = 1, ηi,(x,y)(x, y) = 0 and
ηi,(x,y)(p, q) = 1/8 for (p, q) ∈ M1(x, y) and (p, q) 6= (x, y).

For the nearby rule, Eqn. (6) is also valid and Nm = 2. As in the immediate rule, the
probability ηi,(x,y)(x, y) = 0. ηi,(x,y)(p, q) for (p, q) ∈ M1(x, y) equals 0 as well. Simple
reasoning using conditional probability shows that ηi,(x,y)(p, q) for (p, q) in the outer
ring of M2(x, y) takes one of three values p1 = 1/8(2/5 + 1/3), p2 = 1/8(1/5 + 1/3),
and p3 = 1/40, showing a pattern like (p1, p2, p3, p2, p1, p2, p3, · · · ) along the clockwise
direction, with the first p1 corresponding to a corner cell in the outer ring (see Table 1).

For other rules Monte Carlo simulation has to be used to compute, off-line, a look-up
table for the probabilities ηi,(x,y)(p, q) in Eqn. (6); this reduces to computation of only
ηi,(0,0)(p, q) for the spatially homogeneous case. We use ensemble realizations to simulate
the positions an agent will move to when starting from (0, 0), counting the number of
occurrences of position (p, q), and then calculating the probability ηi,(0,0)(p, q).
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p1 p2 p3 p2 p1

p2 0 0 0 p2

p3 0 0 0 p3

p2 0 0 0 p2

p1 p2 p3 p2 p1

Table 1. Migrating probabilities from cells in the size 2 Moore neighborhood to the central cell for the
nearby rule. p1 = 1/8(2/5 + 1/3), p2 = 1/8(1/5 + 1/3) and p3 = 1/40.

5. Coarse Projective Integration for Agent Populations

We use the Coarse Projective Integration (CPI) method of the equation-free framework
developed in Theodoropoulos et al. (2000), Kevrekidis et al. (2003, 2004), to accelerate di-
rect ABM simulation. This approach exploits the smoothness of coarse-level, macroscopic
variables in multiscale complex system models, so that these variables can be accurately
extrapolated over a large time interval and, accordingly, the overall computation time
for the direct, fine-level simulation can be compressed. This approach mimics solving the
population-level equations (had they been available to simulate) and is designed for the
case when closed equations for the population-level variables are not explicitly available.
This is particulary relevant to simulation of complex urban systems, where we may actu-
ally be using the simulation as a tool to think with and to quickly and efficiently explore
what appropriate rules might be.

Specifically, the method employs a time-stepper for population-level variables (de-
scribed immediately below) to repeatedly (1) obtain successive snapshots of coarse vari-
able evolution; (2) numerically estimate temporal derivatives of these variables; and then
(3) extrapolate (“project”) the values of the variables to a future time using the estimated
temporal derivatives. The time-stepper consists of three essential stages. The first one is
a lifting procedure that, given the population-level variables’ values, generates an ensem-
ble of fine-level-state realizations consistent with these macroscopic values. The second
stage is fine-level simulation , which evolves the fine-level states for some time interval.
The third stage is the calculation (from the result of the ABM simulation realizations)
of the coarse-level variables at the final time, which we call restriction .

In our case the macroscopic variables consist of a (discretized, possibly on a coarse
mesh) population density profile. One way to design the time-stepper for the CPI is to
generate realizations of ensemble agents from such a real-numbered agent (population)
profile and to let each realization run according to the movement rules for the agents.

For general scenarios of the population profile evolution, we simply chose to extrapolate
grid (expected) values of the population profile at every grid point to a future time. The
CPI procedure is as follows:

(1) Lifting : Generate ensemble realizations of integer-numbered population profiles
Pn,q(x, y), q = 1, 2, · · · , Ne, where Ne is the ensemble size, consistent with a real-
numbered profile Pn(x, y). Then randomly produce an ensemble of agents for each integer-
numbered profile Pn,q(x, y).

(2) Fine-level Simulation : Run each integer-numbered population profile Pn,q(x, y)
through mobilizing ensemble agents in realizaton q according to the movement rule(s)
chosen.

(3) Restriction : At some later time steps tn+1, tn+2, · · · , tn+T , calculate the pro-
files Pn+1,q(x, y), Pn+2,q(x, y), · · · , Pn+T,q(x, y) for each realization by counting the
number of agents in each (x, y), and then obtain the ensemble-averaged profiles
Pn+1(x, y), Pn+2(x, y), · · · , Pn+T (x, y).
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Figure 2. The coarse projective integration scheme applied to urban sprawl.

(4) Extrapolation : Numerically estimate the temporal derivative dPn+T (x,y)
dt

by im-
plementing a least-square fitting of the last Tf population profiles Pn+T−Tf +1(x, y),
Pn+T−Tf +2(x, y), Pn+T (x, y). The extrapolated population at (x, y) is then calculated
by

Pn+T+Te
(x, y) ≈ Pn+T (x, y) +

dPn+T (x, y)

dt
Te, (8)

where Te is the extrapolation time interval.
The CPI scheme is schematically depicted in Fig. 2.

6. Numerical Results

Following the original ABM simulation experiment in Torrens (2006), we ran the model
for three sprawl scenarios: general growth, polycentric growth, and a site-specific appli-
cation to the American midwest megalopolis (Chicago and vicinity, around Lake Michi-
gan). To evaluate the performance of the scheme, we performed first direct simulation
and then CPI in a parallel computing environment with 25 3.2GHz Xeon processors (part
of Princeton’s TIGRESS supercomputing cluster). If population-level equations can be
derived, it is clear (and we will confirm this below) that simulating the discretized con-
tinuum equations is the fastest computational alternative; the migrating probabilities
that appear in these equations may be analytically obtainable, or they may require an
off-line, precomputation step, which is also implemented in parallel. In the following we
will first confirm that explicit equation solutions can be used to accelerate the simula-
tion of three scenarios of urban sprawl as performed in Torrens (2006). We will also show
that CPI provides an alternative approach to accelerating these ABM simulations; im-
portantly, this type of acceleration is possible even when explicit (either with or without
precomputation) equations are not available. In our illustrative CPI computations the
simulation time interval T is set to 5, the time interval for least-square fitting Tf is set
to 3, and the extrapolation interval Te is also set to 5.

6.1. General growth scenario

In this scenario, a central city and two competing cities are located in a 2D domain
which consists of 801 × 601 grid points. Agents may enter the central city through three
gateways, while each competing city has only one gateway. Exogenous change rates in the
central city are approximately 16,000 per time step and the immigration rates in the two
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competing cities are roughly 75% of that in the central city. Heterogeneous endogenous
change rates are assigned to grid points in the simulation domain. The leapfrog rule is
used to mobilize agents. 50 copies of the population are simulated to obtain the ensemble-
averaged population. The computation is implemented up to simulation time t = 300.
(A unit of time here roughly corresponds to a year in the real world, although, since the
simulation is abstract, this is not quantitatively important. In a later scenario, the model
will be applied to a real-world analog, and then correlations between simulation and real-
world timing can be drawn.) Fig. 3 illustrates a comparison of the ensemble-averaged
population computed by the direct ensemble simulation and the explicit equation solution
at four time instances. Relative errors between the two methods are within the level of
3%. Population densities computed from CPI also agree well with the direct ensemble
simulation (see Fig. 4) and their relative errors do not exceed 10%. Agent populations
at two gateways (city centers) computed from the three methods are compared in Fig. 5
which shows excellent visual agreement. In the coarse projective integration, despite slight
noise in the extrapolated profile relative to that in direct simulation, the extrapolated
profile quickly adjusts back to the true profile evolved by the direct simulation, typically
within one time step or two (the “healing period” in equation-free computation).
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Figure 3. Comparison of ensemble-averaged agent populations computed using the direct ABM
simulation and a single explicit equation solution at four time instances. Agent motion follows
the leapfrog rule. Left column: population from direct ensemble simulation; Middle column: pop-
ulation from explicit equation solution; Right column: relative errors between explicit equation
solution and direct ensemble simulation.
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Figure 4. Comparison of ensemble-averaged agent populations computed using the direct ABM
simulation and those computed through coarse projective integration at four time instances. Agent
motion follows the leapfrog rule. Left column: population from direct ensemble simulation; Middle
column: population from coarse projective integration; Right column: relative errors between
coarse projective integration and direct ensemble simulation.
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Figure 5. Comparison of agent population density at two gateways (general growth scenario, see
text). Agent motion follows the leapfrog rule. Left figure: the middle gateway of the central city;
Right figure: the gateway of the right competing city.

6.2. Polycentric growth scenario

In the second scenario, the urban settings and the agent exogenous change rates are
the same as in the first scenario. However, the agent migration will now follow a mixed
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combination of leapfrog, road-like, irregular, and nearby movements (denoted as the
“mixed rule” from now on) at every time step tn. The migrating probabilities for the
mixed rule, computed using 104 realizations each consisting of 104 agents, are shown in
Fig. 6. In this scenario the computation terminates at time t = 100.

Figure 6. Migrating probabilities at a representative grid point (at the center of the figure) based
on the “mixed rule” (see text).

A comparison of ensemble-averaged populations computed by the three methods is
shown in Figures 7 and 8. As in the last scenario, agent populations at two gateways are
also compared in Fig. 9. The comparison shows that errors of the equation solution and
the CPI relative to direct simulation are within 3% and 10%, respectively.

6.3. Midwestern megalopolis scenario

A realistic history of human population growth around Lake Michigan is simulated in
this scenario. Seven seed sites serve as gateways for imposing external change (see Fig. 13
in Torrens (2006)). The external changing rates of human population at the seed sites are
derived from historical US census data (see Fig. 14 in Torrens (2006)). As in the previous
two scenarios, we assign heterogeneous endogenous change rates to grid points in the 2D
simulation domain. Since the migrating probabilities of agents are heterogeneous over
the simulation domain, it will require vast computation time to accurately precompute
them for each grid point. For this reason, we only use the CPI to accelerate the direct
simulation, and compare their results.

The computation is performed up to t = 200 simulation time steps (200 years in this
case). Fig. 10 shows snapshots of averaged agent populations at t = 50, 100, 200 years for
both direct simulation and for CPI. Their relative differences are also calculated for these
time instances. Due to the error induced by extrapolation at t = 100 and 150 years, the
maximum relative difference at these time snapshots is (instantaneously) large and close
to 50%. Yet this error “heals” quickly (as the figure shows), and at other time instances
the relative differences are normally within 30%. The agent population densities at four
of the gateways (city centers) are also compared for the two simulation methods in Fig.
11, which shows a close agreement between the direct simulation and CPI.
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Figure 7. Comparison of ensemble-averaged agent populations computed using the direct ABM
simulation and by solving the explicit equation at four time instances. The mixed rule is used to
simulate agent motion. Left column: population from direct ensemble simulation; Middle column:
population from explicit equation solution; Right column: relative errors between explicit equation
solution and direct ensemble simulation.

6.4. Computing time

The computing times for implementing direct simulation, explicit equation solution as
well as CPI for the above three scenarios are compared in Table 2.

In the second scenario, the off-line computation for the look-up migrating probability
table (necessary for the population-level equation solution) takes only 3 sec for the mixed
rule. This table clearly confirms that when population-level equations can be derived
(whether analytically or through precomputation) it makes eminent sense to use them in
the model simulation instead of the ABM; we expect that such equations will also perform
better than CPI. We also know, however, that the ABM themselves are designed and used
to capture and understand phenomena not easily describable through explicit coarse-
grained, population-level equations. In such a case, CPI would be our only acceleration
alternative to the ABM. Relative time savings of the CPI method (compared to the direct
ABM simulation) are also shown in the table, indicating that CPI can indeed reduce the
simulation time significantly.
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Figure 8. Comparison of ensemble-averaged agent populations computed using the direct ABM
simulation and those computed using coarse projective integration at four time instances. The
mixed rule is used to simulate agent motion. Left column: population from direct ensemble
simulation; Middle column: population from coarse projective integration; Right column: relative
errors between coarse projective integration and direct ensemble simulation.
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Figure 9. Comparison of agent population density at two gateways (city centers) (polycentric
growth scenario, see text). The mixed rule is used to simulate agent motion. Left figure: population
evolution at the middle gateway of the central city; Right figure: population evolution at the
gateway of the right competing city.

7. Conclusions

The goal of this work is to introduce a multi-scale computational approach that can accel-
erate agent-based simulation of complex urban systems. The approach (coarse projective
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Figure 10. Comparison of averaged population growth around Lake Michigan. Left column: direct
ensemble simulation; Middle column: coarse projective integration; Light yellow/white spikes
denote populations that are larger than yellow areas. Right column: relative errors between coarse
projective integration and direct ensemble simulation.
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Figure 11. Comparison of averaged populations, obtained from direct ensemble simulation and
from coarse projective integration (CPI), at four of the gateways.

integration) is part of the so-called equation-free framework, that allows one to perform
coarse-grained, system-level computations through “wrapper” algorithms – algorithms
that design and execute brief bursts of appropriately initialized agent-based simulations.
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Scenario type Direct CPI Time savings of CPI Explicit equation
simulation relative to Equation Migrating

direct simulation solution probability
General 19356sec 5694sec 70.6% 488sec NA
growth

Polycentric 1788sec 818sec 54.3% 114sec 3sec
growth

Midwestern 806sec 470sec 41.7% NA NA
megalopolis

Table 2. Computing time of the three methods for simulation scenarios.

This approach is useful when population-level equations in principle exist, but cannot
be easily derived in closed form.

We also showed here that, if such population-level equations can be derived, whether
analytically, or with the help of some precomputation, it makes eminent sense to use
these equations directly, instead of either direct ABM or equation-free simulations. We
chose illustrative examples simple enough that such equations could be obtained, for
demonstration purposes; the ambition of the equation-free method, however (and, for
that matter, of complex urban ABM simulations) is to explore and understand phenom-
ena for which no useful coarse-grained equations are known at the population level. We
compared here results of the three approaches (ABM, equation-based, equation-free) for
two movement rules. The results show promise for the usefulness of coarse projective
integration methods in accelerating agent-based computation of complex urban phenom-
ena such as suburban sprawl while maintaining a faithful representation of the original
ABM.

Our approach promises to dramatically enhance the inherent abilities of agent-based
modeling (particularly in their suitability for modeling complex phenomena) by funda-
mentally improving the efficiency of agent-based modeling and by assisting the systematic
extraction of information from such models. Through the choice of appropriate macro-
scopic observables (the right variables for the coarse-level description) our scheme allows
for the principle of emergence in complex systems, and exploits this emergence by deriv-
ing alternative, efficient computational schemes. It is important to state that this may be
possible even in the absence of a priori templates to define what the signatures of that
emergence might be. In our examples the macroscopic variable was the “obvious” one:
population density. For more complex problems, where correlations between the agents
or heterogeneous agent properties are included, modern data-mining tools (like diffusion
maps (Coifman et al. 2005, Coifman and Lafon 2006)) can be used to find such observ-
ables from the simulation itself. This is potentially quite valuable in urban simulation,
where ABMs may be used to actually explore what the rules of the system might be or
how they might interact over space, time, and domains for varying plans, policies, or as-
sumptions. Our approach may also lead to significant efficiency gains in the computation
required to run direct simulations, by replacing blind trial-and-error scenario-sampling
and averaging schemes through intelligent protocols for querying models through meta-
computation.

There are broader potential advantages to the work that we have presented. It could
help reconcile agent-based modeling into a larger “ecology” of mathematical modeling
and computation, by transforming the ways in which agent-based models can be used
as “black box” experiments. Equation-free computation enables agent-based modeling
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to connect to scientific computing algorithms (like fixed point computation, stability,
parametric analysis and more) used in the physical sciences and engineering. By link-
ing mathematics-based scientific computation to agent-based modeling, this potentially
extends the reach of conventional mathematics-assisted modeling beyond the formal ap-
proaches with which it is now associated. Our work also relates to challenges in high-
performance computing, particularly as regards the computability of automata models
with large numbers of automata and large numbers of rules (Asanovic et al. 2006). Indeed,
we have illustrated how the agent-based model can be used in the form of rapid-burst
computational experiments within a metacomputational framework; in this framework
brief ABM simulations are designed, performed, and their results processed to extract
information in a fast, quantitative way. The ABM simulator may be changed to include
many-to-many interacting agent models with richly-specified rules or behaviors; yet the
outer “wrapper” algorithm structure of the metacomputation remains the same. The
ambition of this approach is to “liberate” ABM from scenario-collection, and endow it
with the degree of quantitation, error control and arsenal of algorithms available for
continuum physical/engineering models. To conclude we note that no amount of sophis-
tication in the computation can correct bad modeling: whether the results are obtained
fast, or slow, they can be at best as good as the underlying ABM. If the interactions
embodied in the ABM rules are physically wrong, our approach cannot correct them –
it will (quickly and efficiently) extract the macroscopic consequences of these errors in
the macroscopic model predictions.
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