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Research highlights 

· We present a novel approach to testing, evaluating, and playing with rules for walking 

behavior in agent-based simulation, using an extensible framework for model development 

that allows for a variety of heuristics, algorithms, and approached to be experimented with in 

simulation, and a set of metrics that allow relative movement to be measured and compared 

between models and with the real-world. 

· Our approach extends the capabilities of movement exploration in agent-based simulation by 

introducing a more extensible modeling scheme that can be applied across application 

scenarios, cities, and scales.  

· We prove the usefulness of the scheme by evaluating a suite of commonly-deployed 

movement models/routines used in simulating movement at different scales. 

*Highlights
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“Watching all the insects march along / Seem to know just right where they belong.” (Reznor, 

2005) 

 

Abstract 

Human movement is a significant ingredient of many social, environmental, and technical 

systems, yet the importance of movement is often discounted in considering systems’ 

complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the 

methodological vehicle for modeling complex systems), despite the influence of movement upon 

information exchange and adaptation in a system. In particular, agent-based models of urban 

pedestrians often treat movement in proxy form at the expense of faithfully treating movement 

behavior with realistic agency. There exists little consensus about which method is appropriate 

for representing movement in agent-based schemes. In this paper, we examine popularly-used 

methods to drive movement in agent-based models, first by introducing a methodology that can 

flexibly handle many representations of movement at many different scales and second, 

introducing a suite of tools to benchmark agent movement between models and against real-

world trajectory data. We find that most popular movement schemes do a relatively poor job of 

representing movement, but that some schemes may well be “good enough” for some 
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applications. We also discuss potential avenues for improving the representation of movement in 

agent-based frameworks. 

 

Keywords: walking, agent-based modeling, movement, trajectory measurement 

 

1 Introduction 

Movement of pedestrians is significant across a variety of domains in which it is infeasible to 

experiment with real people or environments. As an alternative, agent-based models (Russell and 

Norvig, 1995), which date to Alan Turing’s original work on intelligent machines (Turing, 

1950),  are popularly used to generate synthetic pedestrians in simulation. In many instances, 

however, representation of agent movement in models is cursory compared to our understanding 

of the factors that drive human motion in the real world and little robust investigation of the 

plausibility of pedestrian movement in agent-based models has been performed. Rather than 

deriving from behavior, pedestrian agent-based models are often developed from the physics or 

informatics of movement. The reasoning for this is straightforward: motion is well-understood in 

these domains. However, there exists little basis for developing consensus among the builders of 

agent-based models regarding the implications of choosing one movement algorithm over 

another. It is also troublesome, philosophically, when models of human movement bear little 

behavioral resemblance to reality, but are used to inform decisions.  

The question that we pose in this paper is: which algorithms are appropriate proxies for human 

movement in agent-based models and why? With this in mind, we critically examine movement 
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algorithms commonly employed in agent-based pedestrian models, assessing their fit with 

theory, with each other, and—using traces of real human movement—with reality. Answering 

this question first requires that we develop an extensible agent-based modeling platform that can 

realize multiple models, algorithms, and parameters. Second, it requires that we introduce 

methods to assess the relative performance of movement algorithms and their ability to replicate 

real-world paths. We will demonstrate that, with few exceptions, movement algorithms for 

agent-based models do a relatively poor job of reproducing realistic mobility in simulation. Some 

algorithms are perhaps “good enough” as rough proxies for human movement, but this generally 

holds only for particular types of sub-movement, at particular scales, or in specific environments. 

We examine why this might be the case and what might be done to remedy the problem. 

2 Related work 

A variety of approaches have been developed to handle pedestrian movement in agent-based 

simulations. Physics models often work from the assumption that agents “go with the flow” of an 

ambient crowd and that their motion can be modeled using equations for flow of non-human 

media such as gases or fluids (which are more tractable that the “messy complexity” of people). 

A related assumption is often made: that pedestrians might cede their personal movement 

behavior to that of the crowd in very densely-populated streetscapes (Hoogendoorn and Bovy, 

2000; Moussaïd et al., 2009), because of reduced degrees of freedom or in extreme scenarios 

where panic induces stampedes (Vicsek, 2003). A variety of techniques are used to model flow 

and person-scale movement within the “stream” is usually represented as particle interactions 

with frictional or force effects. The equations may represent Brownian motion, (Schweitzer, 

2003), random-walks (Batty, 2003; Keßel et al., 2002; Nagatani and Nagai, 2004; Tecchia et al., 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4 

 

2002), or Lévy-flights (Jiang and Jia, 2009). Other approaches use continuum mechanics in a 

field-space or vector-space (Chenney, 2004), using Maxwell-Boltzmann equations (which 

describe gases: see Henderson, 1971 for a pedestrian movement example) or Navier-Stokes 

equations (which describe fluids: see Hughes, 2003; Treuille et al., 2006) that represent the 

motion of the continuum from its constituent parts. Because agents in these schemes are 

characterized homogenously, the equations can be used to generate many-to-many interactions in 

large simulated crowds, with relative economy in computation (see the performance savings 

reported in Patil et al., 2010, for example). 

Path-based heuristics follow graph-traversal schemes developed in computer science. Often, 

pedestrian environments are represented as a tessellated space (Gipps and Marksjö, 1985), which 

agents traverse by scanning probable “next-steps” and assessing the contribution of step-options 

to the overall path length (Nieuwenhuisen et al., 2007), visibility (Turner and Penn, 2002), 

biomechanical effort (Guy et al., 2010), or other conditions.  

Cellular automata models usually ascribe pedestrians to cells using state-descriptors, such as 

density of occupation (Gipps and Marksjö, 1985), and those states are diffused by exchange with 

neighboring cells using transition rules, usually as myopic graph-searches that mediate the value 

of a given cell in a previous time-step with state (pedestrian density, walkability) information in 

the ambient neighborhood (Blue and Adler, 2001; Crooks et al., 2009). In some instances, cells 

are designed to represent individual pedestrians and state information such as velocity and speed 

may be shared between cells (see Kukla et al., 2001, for example).  

Data-mining and knowledge discovery may be used to source agents’ movement from libraries 

of trajectory samples (Lee et al., 2007; Lerner et al., 2007). These samples may come from 
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location-aware hardware that pedestrians may carry, or from image processing of video 

sequences to extract movement trails (Kitazawa and Fujiyama, 2010). 

Agency-driven models usually seek to mimic socio-behavioral agency (decision-making, 

motivation, affect; see Pelechano et al. (2008) for an overview) in movement or to treat cognitive 

functionality such as memory (Sakuma et al., 2005) or vision (Boulic et al., 1994; Renault et al., 

1990). In other examples, collective agency is considered, as interactions among pedestrians in 

crowds, either as “herds” (Reynolds, 1987), as social groups (Musse and Thalmann, 1997) or as 

teams (Allbeck et al., 2002). 

Perhaps due to the difficulties of collecting data in large crowds and in natural contexts, formal 

analysis of movement in agent-based models is performed relatively infrequently. There are 

some exceptions: Singh, et al (2009) developed performance tests for agent steering in 

simulation, as well as a set of metrics for measuring steering, although these were not compared 

to real-world data. Dodge et al. (2009) cataloged a set of physical characteristics that can be used 

to index movement in moving objects databases. Jiang et al. (2009) introduced a scheme for 

relating pedestrian mobility to urban street networks. The descriptive properties of crowd flow 

are by far the most common metric for agent-pedestrian models, because they ally with policy-

relevant characteristics such as occupancy levels (Fruin, 1971), crowd density (Batty et al., 

2003a), flow rates (Henderson, 1971), and egress timing (Nara and Torrens, 2007). The presence 

of emergent patterns in crowd flow—lane-formation (Helbing and Molnár, 1997), vortices 

(Venuti et al., 2007), annealing (Zhang, 2009), and bottlenecks (Hoogendoorn and Daamen, 

2005)—are also explored because they have been observed in video footage of real crowds 

(Johansson et al., 2008; Moussaïd et al., 2009).  
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While a wide variety of approaches are available as movement regimes for agent-pedestrians in 

simulation, relatively little effort has been invested in benchmarking the suitability of individual 

movement algorithms to real-world data, or in relating algorithms to each other. This is perhaps a 

consequence of the disparate models used, which often focus on specific sub-movements (trip-

determination, path-planning, navigation, way-finding, steering, collision avoidance, 

locomotion). This begets the following questions: which movement algorithms are suitable 

analogs for real-world behavior and how might we determine this qualitatively and 

quantitatively? To answer this, we have developed an agent-based platform that can flexibly 

accommodate varying representations of movement. Any differences in movement can be 

attributed to the algorithm, thus avoiding potential modeling artifacts or differences in running 

models over different platforms or data models. We have also developed a scheme to measure 

movement across application domains, across movement characteristics, and across scales. We 

have chosen to test the following movement algorithms, because they represent a full spectrum 

of movement behaviors and relevant scales; they are also commonly used in agent-based models: 

simple random walk, Brownian motion, Lévy-flights, hopping, path-planning, greedy hill-

climbing, steering, and social force. 

3 Methods 

In this section, we will introduce an extensible automata scheme for modeling movement. We 

will also detail how we fit common algorithms to this framework. 
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3.1 A flexible information architecture for agent movement 

Our agent-based platform uses geographic automata (Torrens and Benenson, 2005) as the 

information handler for motion control. Geographic automata (GA) provide the extensibility 

necessary to develop a diverse set of movement algorithms across varying conceptualizations of 

space, situational awareness, and information-processing in simulation. Geographic automata 

contain all of the “standard” information-processing of agent-automaton (states , state transition 

rules , and neighborhoods of input/interaction ), but they add specialized functions for 

handling geography. 

 

  

State transition rule:  

Movement rule:  

Neighborhood rule:  

(i) 

 

A movement ontology K allows a user to characterize (or other automata to interpret) automata 

as mobile or stationary; if stationary, movement rules are not applied. Locations  are used to 

encode positions using a variety of spatial conventions. Cell-space is used to divide a space into 

discrete rasters. Vector-spaces register agents’ position within a field-space. Graph-space is used 

to position agents within a network  of vertices  and edges . Metric-space is used 

to cross-index the other three spaces to Euclidean geometry. An agent may therefore be 

positioned in multiple spaces at once. Movement rules  articulate agents through L and time t.  
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Neighborhoods  encapsulate portions of space and time in , usually for the purpose of 

gathering state information within space-time envelopes. For cell-spaces, neighborhoods are 

defined as discrete areas of a lattice, centered on an agent. For vector-space neighborhoods, any 

Euclidean object can be designated as a neighborhood and agents may assess it with Euclidean or 

topological operators. Neighborhoods in graph-space are expressed as an adjacency-list of in-

edge and out-edge connections with other vertices (or graphs). The relationships N are 

“dockable”: agents may poll neighborhood information from many of the space protocols in the 

model. Neighborhood rules  allow specification of mechanisms for changing neighborhood 

conventions over space and time (in conjunction with state transition rules  and/or movement 

rules ).  

3.1.1 Memory 

Agents retain a short-term memory structure, implemented as arrays and organized hierarchically 

using queues. Priority queues can thus be specified and information can be loaded to these 

queues or removed from memory using standard “pop” and “push” schemes (Lormen et al., 

2007). Agents may also share their queue information with other agents. 

3.1.2 Timing 

Two types of update cycle are allowed in the model. The first option is asynchronous, which 

introduces a stochastic element into the order in which agent states, locations, and neighborhoods 

are updated in the duration . The second option uses a “sloppy synchronous” 

(Watkinson, 2002) update: agents are updated in the order in which they were created.  
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3.2 Software overview 

The software scheme for the model is illustrated in Figure 1. An “agent factory” allows users to 

introduce customized agents in simulation. Parameters for simulation may also be customized 

and read-in at run-time or on-the-fly. Spatial objects and relationships are managed via a 

geographic information system (GIS), which facilitates data access and can be used to introduce 

neighborhood filters. Probe agents are used to poll information from the model during run-time 

and these data may be visualized or run through validation metrics. Simulations are visualized in 

run-time (Figure 2) using the OpenGL components of Reynolds’s Opensteer library (1999) (it is 

important to state that our model is decoupled from Reynolds’s steering model; we only use the 

graphics libraries for display); in addition, we added a scene graph to manage the rendering of 

objects dynamically on-screen. 

[Figures 1, 2 go here.] 

3.3 Movement by path-planning 

We considered three algorithms for path-planning: a hill-climbing algorithm (Figure 3), 

Dijkstra’s algorithm (Figure 4), and A* search (Figure 5). Hill-climbing is a greedy goal-seeking 

behavior: it produces a path from source to sink in a graph by iteratively exploring nodes. This is 

usually myopic. At a given node, the algorithm assesses adjacent nodes (locally, e.g., within a 

five-cell von Neumann or nine-cell Moore neighborhood) and moves the agent to the node that it 

determines to be nearest the global sink at that point in time. 

[Figures 3 to 5 go here.] 
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Dijkstra’s (1959) algorithm finds a (not necessarily the) shortest path from an origin to a 

destination, using incremental expansion to adjacent vertices on a graph (best-first search). It 

differs from hill-climbing by considering its entire search history at any given time. At each 

expansion point, the algorithm calculates and stores its progression from the origin. The 

algorithm also remembers where it has been and what nodes it still needs to visit. Once it has 

visited all vertices on the graph, it selects a path that has the shortest total edge length from the 

origin to the destination. Movement along this path can then proceed along edges  

separating individual nodes  and . The algorithm is detailed in Table 1. 

[Table 1 goes here.] 

 

The A* algorithm (Hart et al., 1968) is similar to Dijkstra, but in addition to calculating  at 

each choice-point  in the search, A* also calculates the Euclidean distance from a given node to 

the destination (in addition to graph distance) when estimating the plausibility of a given node’s 

candidacy for the shortest path . For this to work, the graph  must be metric. Euclidean 

distance is used because it represents the shortest possible path between two nodes. The heuristic 

allows A* to prune unlikely paths from the search, by comparing progress from the origin  (as 

in Dijkstra’s algorithm) with estimated progress to the destination (the true value of which is 

unknown with certainty until the destination is reached). Plausibility is calculated as follows. 

 

   (ii) 
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Above,  is the estimated plausibility of a given node ,  is the estimated progress 

from the origin , and  is the estimated Euclidean distance from node  to the destination 

(where  at the destination node). Given a choice between nodes  to add to 

a shortest path list , the A* algorithm will select the node with the smallest associated . 

3.4 Movement by random walk 

Random walks move agents by perturbing their trajectory in motion, sometimes following some 

probability distribution that expresses the propensity for the agent to move with a particular 

heading. We considered three distinct types of random walks: a simple random walk (Figure 6), 

Brownian motion (Figure 7), and a Lévy-distributed walk (Figure 8). The walks are performed as 

vector movements over a field-space. In each case, agents begin their walks from a randomly-

assigned start position within the field.  

The simple random walk determines an agent’s new location  between time steps  

as follows: 

 

  

 

(iii) 

 

Movement is linear and the step-size  is user-defined (we used a value of ); direction for 

movement  is selected randomly. 

[Figure 6 goes here.] 
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Brownian motion generates stochastic random walks by assuming that movement is influenced 

by an ambient liquid in continuous time. We modeled Brownian motion using a set of 

differential equations, following the Langevin approach described in Schweitzer (1997) : 

 
 

 

(iv) 

 

Equation (iv) updates the position  of an agent at time  by manipulating its velocity ; 

the liquid is represented by a random function ;  is a friction coefficient and  is the 

intensity of a stochastic force (Gaussian white noise). These parameters are user-defined: we 

used , , and . 

[Figure 7 goes here.] 

Lévy flights generate movement of varying lengths (Figure 8), while maintaining a scale 

relationship between lengths, using a Lévy index, an exponent , which follows a 

power-law distribution. The exponent is introduced to agent movement as follows (Bartumeus et 

al., 2005): 

 

 
length  (v) 
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 is the Lévy index, which may be user-defined (we used  and ). 

[Figure 8 goes here.] 

3.5 Movement by steering 

Movement by steering is usually based on Newton’s (1687) first and second laws of motion, 

which treat acceleration by applying force relative to mass. We calculated linear and angular 

acceleration forces by updating agents’ velocity/rotation ) and position/orientation ) through 

Euler integration of acceleration ) over , as follows: 

3.6  3.7   

3.8  

(vi) 

3.9 Velocity is clipped to a user-defined maximum speed per agent  after this update. All 

steering behaviors are introduced to vector agents in a field-space. 

Atop this foundation, we introduced three dynamic steering behaviors: pursuit (Figure 9), 

evasion, and wandering (Figure 10). Dynamic steering is proactive, allowing agents to anticipate 

the movement of other objects in their environment; this contrasts with static steering (see 

Reynolds, 1999, for example), which is simply reactive. For pursuit, an agent (p) identifies a 

moving target ( ) and tries to match its position to that target by acceleration ( ), dynamically 

and at its own user-defined maximum acceleration ( ), as it shifts course. A pursuing agent 

knows the current position of the target; it calculates the time that it will take to reach that 

position and uses this as a prediction time . If this time is very long (beyond a user-defined 

threshold), it is likely that the moving target will have changed its speed and heading remarkably 
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(i.e., while the agent was thinking about an intercept course, the object may be long-gone) and so 

we also provided a maximum prediction time  that was used to limit prediction error: if 

the prediction time is too long, the agent should use .  

 
Direction of the target:  , and  

the future heading estimate:  and  

(vii) 

 

Evade behavior is the inverse of pursuit behavior. 

[Figure 9 goes here.] 

Wandering produces the steering equivalent of a random walk, with the difference that steering 

is constrained within a neighborhood. Although agents move randomly at each step; the 

constraint imposes some continuity in the agent’s path at local scales. Operationally, this is 

achieved by casting a circular “attention zone” ahead of an agent (representing the local area in 

which its attention is focused). The radius ( ) and distance ( ) of the zone are 

user-defined; changing their values alters the smoothness of the wandering. A random position 

on the circle is chosen and designated as a target ( ) for seek behavior. (This position can 

alternatively be specified by the size of a random deviation angle from the agent’s moving 

direction.) Positioning on the attention zone is calculated as follows: 
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(viii) 

 

Above, O represents an agent’s direction;  is a subsequent wandering move following 

. The last line in equation (viii) requires conversion of agent orientation from radian (a 

scalar) to vector format in L, i.e., , where  is the angle in radians. 

[Figure 10 goes here.] 

3.10 Movement by social force 

The social force model developed by Helbing and Molnár (1995) is popularly used to generate 

pedestrian motion in crowds. The model uses three forces: acceleration, attraction, and 

separation and these are chained using Langevin equations.  

 Acceleration  (viv) 

 Separation  (x) 

 Wall repulsion  (xi) 

 Attraction  (xii) 
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 Motivation  

 

(xiii) 

 denotes the force acting upon an agent’s position ( ) at time zero [equation (viv)]; between an 

agent and target (q) tuple [equation (x)]; between an agent and a wall (W) [equation (xi)], and an 

agent and an attractor (i) [equation (xii)].  indexes an agent’s actual velocity,  its desired 

velocity, and  its desired heading. The fluctuation term in equation (xiii) introduces 

stochasticity. 

[Figure 11 goes here.] 

 

3.11 Movement by hopping 

Movement by hopping is used to produce sudden relocation behavior. By hopping, an agent 

moves instantaneously to a random new location that has free space to accommodate it (Figure 

12). 

[Figure 12 goes here.] 

3.12 Data collection and analysis 

We collected a variety of real-world trajectory samples for different walker demographics, 

activities, environments, and scales to use as a comparison set (Table 2). With the exception of 

the play data reflected in Table 2, walkers’ paths were recorded using Geographic Positioning 

Systems (GPS) enabled with wide-area augmentation systems and subjected to differential 

correction for increased positional accuracy. Play data were collected by human observers, 
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sketching the locations of individual children on a tablet PC, using customized GIS and on-

screen digitizing software that we developed. (Data were collected in compliance with 

Institutional Review Board procedures for the protection of human subjects.) In total, 43.8 km of 

movement data was collected over 46 unique paths in five cities for our study.  

[Table 2 goes here.] 

Our models only consider movement of agents, so our focus in designing movement metrics was 

on capturing movement properties across four (related) domains: the correlation between 

successive turns in movement paths, the general level of turning over an entire path, relative path 

straightness, and movement fractality. Collectively, these allowed us to assess relative sinuosity 

of movement and to characterize the scale at which movement took place. We used Nams’s 

(1996) VFractal measure to relate turning angle  (considered between discrete consecutive steps 

in movement ) that are fitted to a path with varying resolution) to the net length ( ) of 

step-pairs along a path for every step-and-turn tuple. This relationship ( ) is calculated as 

follows (Nams, 1996). 

 

 
 (ix) 

 

The mean cosine of turning angle ( ) measures relative straightness over an entire path 

(  is straight). The correlation between successive turn angles ( ) measures 

directional preservation on a step-by-step basis. We also calculated the fractal dimension ( ) of 
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movement paths, using the standard divider method (Mandelbrot, 1977), to assess the ability of a 

path to fill a plane between one and two dimensions, where  denotes maximum sinuosity. 

Additionally, we calculated a mean fractal dimension ( ), which corrected for known 

overestimation errors in truncation when using the divider method at large scales (Nams, 2006). 

 [Table 2 goes here.] 

4 Results 

In order to investigate the relative performance of the movement algorithms described in the 

previous section, we first considered their correspondence with theory and the plausibility of 

their movement representations. Second, we compared them empirically and substantively to 

each other. Third, we examined the extent to which they might match recorded movements of 

people in the real-world. Because different movement routines are designed to operate at 

different scales, we will discuss the results with respect to macro-movement (urban-scale) and 

micro-movement (person-scale). (Note that several of the metrics we use cut across scales.) 

4.1 Macro-movement 

We built three distinct algorithms to drive macro-movement in simulation: movement by 

hopping, by hill-climbing, and by Dijkstra and A* shortest-path search. In each case, the 

algorithms were tested using a five-cell von Neumann and nine-cell Moore neighborhood, 

providing enough space for agents to examine the local space in their immediate vicinity.  

4.1.1 Movement by hopping 

Movement by hopping has little theoretical justification, save acknowledging that people may 

separate in space and time when moving, through cognitive dissonance (Sakoda, 1971), bias 
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(Clark and Fossett, 2008), or segregation (Schelling, 1969), for example. The hopping algorithm 

generated unrealistically high values of mean fractal dimension ( ) and at large scales 

( ), its VFractal tended toward a value of 2, i.e., it was maximally sinuous (Figure 13). 

This is significant as it shows that movement by hopping is random at macro-scales. Directional 

correlation among successive steps was strongly negative ( ) (Appendix 1). The 

entire picture is unrealistic, suggesting random movement in every facet of the path. People 

almost never move randomly at macro-scales; in an urban context, pedestrian walkers are almost 

always going somewhere meaningful, usually with serial autocorrelation in the movements that 

they take to get there. Movement by hopping is not particularly useful as a proxy for pedestrian 

movement. This is perhaps obvious, but it is useful to demonstrate this quantitatively, 

particularly because hopping is used in computational social science models (see Epstein, 2002, 

for example). 

 [Figure 13 goes here.] 

4.1.2 Movement by path-planning 

Movement by path-planning has a reasonably sound theoretical justification. Path-planning is 

associated with human way-finding, because walkers segment their trips hierarchically and move 

between space-time waypoints (Raubal and Egenhofer, 1998). Path-planning is also related to 

spatial cognition, because walkers generally rely on a mental map of the environment through 

which they intend to traverse (Golledge, 1999) and they commonly use a minimization heuristic 

for way-finding. Over an entire trip, for example, pedestrians generally adopt a course from 

origin to destination that is close to the shortest path between those points (Ciolek, 1981). This 

behavior has been observed in downtown environments (Gärling and Gärling, 1988) and 
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shopping malls (Zacharias, 2001). There is also a real-world analog for encoding movement 

paths in a graph structure, because urban pedestrians walk along sidewalks, which usually follow 

a gridded, connected, network layout (Zacharias, 2001) and there exists evidence that pedestrians 

imagine their environment metrically when walking (Vishton and Cutting, 1995). The A* 

algorithm, in particular, is well-supported in theory because walkers’ knowledge of waypoints 

along a path may be most accurate for origin and destinations (compared to the places in 

between), particularly when origins and destinations present as home or work locations, or as 

landmarks such as transport hubs, retail sites, and entertainment venues (Foltête and Piombini, 

2007). 

Measures of mean fractal dimension for movement by path-planning, across all heuristics, were 

lower than those generated by hopping (  for path-planning, compared to  

 for hopping). They were, in other words, more “reasonable”. However, based on 

our metrics, all of the paths generated by path-planning were a poor match to real-world data. 

For example, we collected data for pedestrian movement through a relatively non-crowded 

downtown streetscape in Salt Lake City, UT (Figure 14). Simulated path-planning produced little 

turning at a macro-scale and this was a close match to the observed data (  for the 

Salt Lake City example, versus  for the path-planning algorithms). This is perhaps 

understandable given the geometry of the street network in which walking took place in both 

examples. However, differences presented at the scale of the sub-path (i.e., movement within-

the-path), where movement in simulation was more sinuous than was observed in the real-world 

(  for the simulations, versus  for the Salt Lake City example). 

This may be because the simulation algorithms produced a lot of lateral movement and 
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zigzagging at local scales, i.e., the path that they produced was relatively straight at a macro-

level, but not at a micro-level (compare Figures 4, 5, and 14); pedestrians in the real-world often 

like to preserve the straightest path along their trip (Hillier and Hanson, 1984).  

This finding is significant because it suggests that path-planning algorithms might be useful as a 

global movement scheme, but a different algorithm may be required to produce realistic local 

movement. The path-planning heuristics were run for nine-cell Moore and five-cell von 

Neumann neighborhoods. In each case, the value of  was slightly higher for the von Neumann 

filter. The difference in  between the filters is small, but this may indicate that the “bandwidth” 

of information available to agents might influence their movement. The von Neumann filter 

presents agents with a smaller volume of information than the Moore case and this may cause 

agents to move into less-than-optimal positions relative to the shortest path, thereby creating 

added sinuosity. The von Neumann filter also presents agents with fewer movement options 

(four, compared to the Moore filter’s eight) and agents may therefore find relative difficulty in 

preserving straight lines while also trying to satisfy the algorithm’s shortest-path heuristic.  

[Figure 14 goes here.] 

4.2 Micro-movement 

Eight algorithms for local movement were constructed and run in simulation: movement by 

steering (wandering, dynamic seeking, dynamic fleeing), by greedy hill-climbing, by Brownian 

motion, by Lévy flight, by random walk, and by social force. Movement by greedy hill-search 

was run for five-cell von Neumann neighborhoods and nine-cell Moore neighborhoods. 

Brownian motion, Lévy flight, and random walks were run over three durations: short- (4,590 

time-steps), medium- (10,031 time-steps), and long-range (37,188 time-steps). These algorithms 
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are considered micro because they operate only on conditions that agents perceive in their 

vicinity, rather than incorporating the sorts of global information that the path-planning routines 

made use of (origin-destination, path preservation heuristics, global graph and metric distance-

to-destination). 

4.2.1 Movement by random-walk 

The theoretical justification for pedestrian random walks comes from analogies between the 

behavior of pedestrians in densely-packed crowds and the dynamics of particles in physical 

flows (Henderson, 1971), whereby it is assumed that pedestrian crowds will behave as excitable 

media when in extreme situations (Farkas et al., 2002; Schweitzer, 2003). Similar signatures of 

complexity, such as spontaneous lane formation (Blue and Adler, 2001), annealing (Helbing et 

al., 2001), striping (Helbing, 1992), and freezing by heating (Stanley, 2000) have been 

hypothesized as manifesting in crowd and particle flows and this is often used as justification for 

the application of physical equations to the modeling of pedestrian movement (Henein and 

White, 2007). The physical rationale for pedestrian behavior is at odds with behavioral 

explanations, from sociology (Couch, 1968), psychiatry (Mawson, 2005), and safety 

management (Bohannan, 2005), however, which suggest that the interactive relationships 

between pedestrians are much more complicated than those expressed in particle-based models. 

Observations from crowd safety studies, for example, highlight that people do not behave like 

dumb, excited particles in extreme settings and that they are often very humane in their 

interactions (Couch, 1968; Pauls, 1984).  
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The results for simple random walks were far more sinuous than any of the real-world data 

collected. In the case of long-range random walks, the paths approached the maximum potential 

tortuousity ( ).  

In contrast, walks generated by Brownian motion generated a level of sinuosity that was 

comparable to real-world data in some instances. We recorded values of , 

, and  for short-range, medium-range, and long-range Brownian trips 

respectively. Brownian motion over short ranges actually produced reasonable movement paths 

( ). Across all scales, Brownian motion also provided a good analog for very dense 

crowds: the values compared well with the extremes of high-density movement of real 

pedestrians over Tokyo’s Shibuya crossing, for which values of  were 

recorded (although, trips over this crosswalk are relatively short in reality). Similarly, the match 

to values for Yokohama (on a retail high street, where sidewalks are often quite full) were good 

( ). Lévy-flight walks also generated reasonable paths (

), but did so at all scales. 

These results suggest that, at local scales and in very high density crowds, pedestrian walking 

may be close to Brownian motion in the geometry of the paths that it produces (the Shibuya 

crossing is one of the world’s busiest crossings). In these cases, pedestrians may engage in many 

rapid, small course adjustments to avoid collisions or to correct their path under the influence of 

many potential interactions. This was apparent in the VFractal profile for the Shibuya data, for 

example. The value of V was much higher at local-scales than at macro-scales (Figure 15). The 

Lévy flight, which scales long, straight movement relative to short, tortuous movement seems 

particularly well-suited to generating paths that ally with real-world human motion in dense 
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urban settings (such as Yokohama). This makes sense: pedestrian movement along urban 

streetscapes in downtown settings, such as the spaces that we sampled in Japan, could reasonably 

be considered as involving short-lived periods of free-walking, punctuated more frequently by 

the need to avoid collisions in relatively smaller movements.  

[Figure 15 goes here.] 

The real-world movement samples from the pre-school center also have a potentially close 

analogy with random walks (children are, after all, a particularly excitable human medium). 

Movement through festival crowds is another appropriate analog, as pedestrians in those settings 

may well be wandering to browse or move subject to a larger crowd flow without a predictable 

course. However, none of the random walk behaviors was a good match to the pre-school data or 

the festival data (Appendix 1). 

4.2.2 Movement by greedy hill-climbing 

We considered greedy hill-climbing as a micro-movement scheme because of its relationship to 

information-gathering and movement in cellular automata pedestrian models. Movement by hill-

climbing has some theoretical justification. Goffman (1971), for example, outlined the procedure 

by which pedestrian walkers search for collisions by scanning their environment in a small circle 

around them, ignoring features at a distance. Although the movement metrics produced by hill-

climbing were a reasonable match for much of the real-world data that we collected (Appendix 

1), the algorithm failed to resolve a path in our tests, even in a relatively straightforward 

synthetic urban environment (Figure 3). It would only work over short distances in relatively 

open environments, becoming otherwise mired in local maxima or minima. Without the added 

macro-guidance that was included in the Dijkstra and A* heuristics, the hill-climbing routine has 
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no way to resolve these conflicts. (Similar results were reported in Haklay et al. (2001), where a 

“helmsman” module had to be introduced to “wiggle” agents free of such minima/maxima; the 

number of instances of wiggling were not reported.) The widespread use of hill-climbing as a 

proxy for movement in cellular automata pedestrian models (see models by Batty, 2003, which 

are purposely abstract in this way) therefore seems questionable.  

Our findings for greedy hill-climbing ally with conventional theory regarding behavioral 

geography, which suggests that people navigate and move with both local and global information 

and motivations (Golledge, 1999). (It may be difficult to achieve action-by-proximity and action-

at-a-distance using cellular automata models, however.) Recall also that we used relatively 

small-area neighborhood filters (five- and nine-cell, as is commonly the case in most cellular 

pedestrian models; see Torrens (2005) for an overview). It is possible that better thought-out 

vision filters could overcome the entrapment problem. There is some debate, for example, about 

the size (and shape) that vision filters should use. Space syntax approaches characterize vision in 

terms of “axial” lines-of-sight (Penn, 2003; Turner and Penn, 2002), for example, that relate 

vision to the geometry (axes) of the built infrastructure through which people proceed. Wolff 

(1973) observed that walkers used up to a 30m threshold for assessing their next step in low 

density situations, but that they constrained that filter to 1.5m in high density conditions. Using 

eye-tracking technologies, Kitazawa and Fujiyama (2010) estimated the distance to be just a few 

meters (for which a Moore or von Neumann neighborhood of nine or five “person-sized” cells 

would seem plausible).  
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4.2.3 Movement by steering 

The theoretical justification for movement by steering is varied. People steer to escape collisions 

(Cutting et al., 1995) and to avail of interactions (Whyte, 1980). The magnitude of steering is 

also relevant Wang and Cutting (1999) noted people’s tendency to steer in a narrow region of 

interaction and Dabbs and Stokes (1975) described how walkers yielded wider berth when 

avoiding groups of pedestrians than when avoiding individuals.  

We collected trajectory samples from an art festival in an American downtown and a zoo 

festival. Because of the need for pedestrians to avoid other members of the crowd, to wander 

when browsing sights, or to seek out attractions in these events, we considered them to be a good 

analog for steering. The children’s movement data we described previously are also a good 

comparison set because paths were sampled in a pre-school where children engaged in games of 

racing, baseball, pretending to be animals, and so on, which involved short bursts of seeking and 

fleeing.  

The values of fractal mean were  for the art festival and   for 

the zoo festival (Appendix 1). Correlations among successive turns were close to zero in all but 

two of the festival paths. Moreover, the mean cosine of turning angles over the entire path was 

 for both sets of festival data. This indicates a lack of directional 

preservation in the festival data, at scales from the local to the global. These festival data were 

not a good match to the simulated paths produced by steering, likely because the real-world data 

was collected for individual paths in a large and dense crowd (thousands of people in the case of 

the zoo festival), but our simulations in this case took place without crowds. 
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For toddler movement in the pre-school sample,  was relatively low (among the lowest values 

recorded through all of our real-world sampling): , with a relatively strong 

negative correlation between successive turn angles ( ). This 

suggests relatively uncoordinated movement. The values for simulated movement by steering 

were lower than those for the pre-school sample, but they were the closest match. It would seem 

that steering at a local scale cannot independently generate movement with an analog in the real-

world paths we observed. Once again, these findings point to a conclusion that many movement 

schemes are needed, in parallel, to generate realistic-seeming paths through space and time. 

4.2.4 Movement by social force 

We tested the social force model on a simulation of many-interacting pedestrians in a dense 

crowd, using social forces to move agents and a bounding wall to encapsulate them [wall 

repulsion is part of the original model, see equation (xi); the space was treated as toroidal, so that 

agents moving over one edge would reappear on the opposite side with continuity] (Figure 11). 

The model produced paths with . The correlation among successive turn 

angles was the highest of all scenarios we considered (Appendix 1) ( ). While some of 

the paths generated by social force were consistent with real-world data for very high density 

situations (extreme sinuosity over the Shibuya crossing, for example), the amount of sinuosity 

produced in simulation was considerably higher than more quotidian examples of movement. For 

example, the modeled paths did not compare favorably with real-world paths for walking in low-

density crowds on a university campus ( ) or through an open-air shopping mall 

( ). Measures of fractal mean did compare well with the festival data, but only for the 

lower-range of  for social force movement. Notably, the social force model produced many 
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artifacts in simulation: agents moving backwards to avoid collision and frequent compound 

retreating due to sequences of near-collision that prompted them to take many steps backwards in 

order to move forward (this is evident in the colored traces of movement shown in Figure 11). 

Pedestrians ordinarily prefer to travel in a direction that faces their destination (Hillier and 

Hanson, 1984). Normally, they will not orient themselves in directions that oppose the direction 

of their goal (Older, 1968) and common knowledge suggests that they will rarely perform about-

face maneuvers when they are already mobile. While the force analogy may be useful for the 

flow of an entire crowd mass or for very dense crowds, it does not seem appropriate for 

simulating individual movement paths in quotidian scenarios.  

5 Conclusions 

In this paper, we examined popular algorithms as motion controllers for synthetic pedestrians in 

agent-based models, with the intention of assessing whether they faithfully represent real-world 

movement. This required development of an extensible agent-based modeling platform that 

could represent varying movement schemes, as well as a suite of analytical tools that could relate 

simulated movement between models and relative to real-world pedestrian trajectories. 

The modeling scheme that we introduced, based on geographic automata, proved efficient in 

representing a diverse range of movement schemes. Indeed, all of the models that we tested were 

accommodated using geographic automata. The approach has some distinct advantages in 

representing multiple spaces in simulation and facilitating their cross-interaction. Our analysis 

scheme also proved useful, in benchmarking diverse movements across different scales. The 

utility of the analysis could clearly be extended by “docking” additional metrics—measures of 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

29 

 

complexity (Batty and Torrens, 2005), sociometrics (Waaserman and Faust, 1994), or time 

geography (Miller and Bridwell, 2009) may add further context. 

Some algorithms do not seem to function as productive proxies for pedestrian movement. This 

includes movement by hopping and simple random walk. Understandably, these are among the 

most abstract of movement regimes, but they are still used to generate agent mobility in 

pedestrian (Batty, 2003; Batty et al., 2003b) and computational social science models (Epstein, 

2002), including applications where movement is characterized as particularly significant 

(Gorman et al., 2006). These techniques are prevalent in agent-based disease transmission 

models (Epstein et al., 2008), even where such models are advertised as being spatially explicit 

(Eggo et al., 2010) and despite general agreement that disease dynamics are linked to mobility of 

host and vector agents (Ferguson et al., 2006; Hess, 1996), as well as the movement of disease 

events such as epidemics or pandemics (Grenfell et al., 2001). The treatment of movement in 

disease transmission models was understood to be problematic almost four decades ago [see 

Noble (1974)], but relatively little has been done to remedy the problem. 

Other algorithms have reasonably sound theoretical foundation and perform well at particular 

scales, but not others. Path-planning, for example, is relatively appropriate for global movement, 

but not for local movement. 

There are also algorithms that have relatively little theoretical justification, but perform 

reasonably well against real-world data: Brownian motion is an example. Such algorithms are 

difficult to use in simulations used to support theory or decisions because they fundamentally do 

not match real-world behavior. They do, however, have usefulness, for example, in ascribing 

stochasticity to movement generated by other, theoretically-plausible, behavior.  
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We also found that some movement schemes, while theoretically plausible, are problematic 

simulators for movement. The often-used greedy search heuristic is an example. The algorithm 

represents pedestrians’ tendency to scan their immediate environment and react to information 

on a step-by-step basis. However, it failed to resolve paths through anything but the most simple 

environments, largely because it did not consider other, related, movement processes operating at 

different scales (global path-planning) or information beyond the micro-scale. Similarly, steering 

(which is perhaps the best fit to behavioral geography of all of the methods we examined) could 

not generate realistic movement when used exclusively as a motion controller. Social force 

models are also suitable for specific contexts (high density crowds in confined spaces) but do not 

work well in isolation. 

Lévy flights are an exception of sorts: they performed relatively well in simulation, capturing 

elements of movement across scales. Interestingly, correlation of movement across scales 

follows a power-law distribution in Lévy flights, which matches recent evidence that trip-making 

at population levels follows high-magnitude/low-frequency distributions (Brockman et al., 2006; 

González et al., 2008), rather than the fractal relationship that is found in many particle-based 

physical systems that are often compared to pedestrian flows. 

In summary, our results suggest that all of the mechanisms responsible for pedestrian movement 

should be treated in an integrated fashion in simulation and that careful attention should be paid 

to relating algorithms to their characteristic scales, as well as providing opportunities for 

emergence across scales through appropriate (behaviorally-plausible) mechanisms. Clearly, 

information—as well as how agents acquire that information, how they process it relative to their 

evolving mental maps, how they interpret their findings relative to the often partial 
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understanding they have of their ambient environment, and how they translate information into 

movement—plays an important role in this regard. Our analysis demonstrated the significance of 

simply adapting neighborhood filters for mobile agents. While some proxy representations of 

movement are “good enough” to generate mobility in simulation, the field would perhaps benefit 

from further exploration into mechanisms of behavioral geography that drive movement in the 

real-world: how movement behaviors interact; how they scale; and how they relate to the social, 

built, and technical environment of today’s cities. This requires careful consideration of how 

those behaviors might best be translated in into computable form for agent-based modeling and 

schemes for assessing the validity of that translation. 
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Figures 

 

Figure 1. An overview of the main software modules that run the simulations. 

  

REVISED figures



 

Figure 2. A view of simulation running on-screen; objects in the model may be queried by 

clicking during run-time and the data will be dynamically drawn from the underlying GIS. 

  



 

Figure 3. A hill-climbing algorithm is unable to resolve a simulated path to the first destination 

because it becomes trapped in a local minimum after 54 (or 57) steps: next-moves that are 

available to the algorithm are equidistant from the goal and the algorithm cannot choose between 

them. (The area represented above is covered by 2,500 units/pixels/rasters.) 



 

Figure 4 illustrates a simulated shortest path between an origin and five destinations, taken 

through a set of obstacles as determined by the Dijkstra algorithm with a Moore neighborhood 

filter, resolved in 14,460 moves. (The area represented above is covered by 10,201 

units/pixels/rasters.) 

 



 

Figure 5 illustrates a simulated shortest path between an origin and five destinations, taken 

through a set of obstacles as determined by the A* algorithm with a von Neumann neighborhood 

filter, resolved in 18,037 moves. (The area represented above is covered by 10,201 

units/pixels/rasters.) 

  



 

Figure 6. Simulated movement by (simple) random walk (in a flat, featureless plane). 

  



 

Figure 7. Simulated movement by Brownian motion (in a flat, featureless plane). 

  



 

Figure 8. Simulated movement by Lévy flight (in a flat, featureless plane). 

  



 

Figure 9. Simulated movement by dynamic seeking (in a flat, featureless plane). 

  



 

Figure 10. Simulated movement by dynamic wandering (in a flat, featureless plane). 

  



 

Figure 11. Simulated movement by social force. 

  



 

Figure 12. Simulated movement by hopping. 

 



 

Figure 13. The VFractal profile for simulated movement by hopping. 



 

Figure 14. The path of walking data recorded for the downtown Salt Lake City, UT example. 

  



 

Figure 15. The VFractal profile of a real-world path for Shibuya crossing (path 1 in Appendix 1). 
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Tables 

Table 1. Dijkstra’s graph-search algorithm, as implemented in our model. 

   

Initialize a search over directed or undirected graph, 

with vertices  and edges , , positive edge 

lengths , and edge weights . Begin the 

search at origin . Record the distance  from the 

origin s. For each node  that is expanded, record its 

predecessor  (from an adjacency list ). Maintain 

a priority list as a queue of nodes that remain to be 
searched at any stage in the algorithm. Also maintain a 

list  of the nodes that form the shortest path from 

origin  to the destination. Initially, mark all nodes as 

unvisited ( ) 

1 

2 

3 

4 

5 

6 

for each vertex  

do  

 

 

 

 

Begin the search at the point of origin  and mark the 

node as visited ( ) 

7  

Record its distance from the origin  8  

Record its predecessor node as NIL 9  

Add  to the priority queue by popping stack  10  

As long as more vertices remain to be explored… 11 while   

Remove the previously-visited node from the priority 

queue by pushing stack  

12 do  

Find its adjacent nodes  connected by edge  13 for each  

If that adjacent node  has not been evaluated 14 do if  

Mark the node  as explored, increment its total 

distance from the root node by 1, record node  as its 

predecessor, and add it to the priority queue  

15 

16 

17 

18 

then  

 

 

 

Mark node  as resolved ( ) 19  

Add node  to the shortest path list  20  

 

  

Table



 

2 

 

Table 2. Data collected for real-world walking paths. 

Activity 
Walker age 

Paths Range Time Location Environment 

Playing 2–5 years 13 30 m–145 m Morning, 

afternoon 

Tempe, AZ Daycare 

center and 

playground 

Lunch trip 25 years 1 682 m Afternoon Salt Lake City, 

UT 

University 

campus 

Work trip 30 years 1 2.8 km Morning Salt Lake City, 

UT 

Medium-

density, 

downtown 

residential 

Shopping 30 years 1 4.6 km Afternoon Salt Lake City, 

UT 

Open-air 

shopping mall 

Browsing, art 

festival 

25 years 1 2.9 km Afternoon Tempe, AZ Medium-

density, 

downtown 

retail 

Crossing street 25 years 6 78 m–161 m Evening Shibuya 

crossing, Tokyo, 

Japan 

High-density 

downtown 

Recreational 

walking 

25 years 2 1.2 km–6 km Evening Yokohama, 

Japan 

High-density 

downtown 

Browsing, 

light festival 

22–30 years 21 67 m–2.2 km Night Phoenix, AZ Zoo 

  

 




