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Abstract

We introducea novel scheme for automatically deriving synthetalking (locomotion) and
movement (steering and avoidance) behavior in simulation from simple trajectory samples. We
use a combination of observed and recorded-wedld movement trajectory samples in
conjunction with synthetic, agegenerated, movemeas inputs to a machidearning scheme.

This scheme produces movement behavior for-s@mnpled scenarios in simulation, for
applications that can differ widely from the original collection settings. It does this by
benchmar king a s i muativa tbehadviorap gebgraphyy ioean physicalr e |
environment, and neighboring agg@destrians; using spatial analysis, spatial data access,
classification, and clustering. The scheme then weights, trains, and tunes likely synthetic
movement behavior, pergent perlocation, peitime-step, and pescenario. To prove its
usefulness, we demonstrate the task of generating synthetiecsampied, agertased
pedestrian movement in simulated urban environments, where the scheme proves to be a useful
substitute to tditional transitiordriven methods for determining agent behavior. The potential
broader applications of the scheme are numerous and include the design and delivery of location
based services, evaluation of architectures for mobile communications tepbsplvhaif
experimentation in ageitased models with hypotheses that are informed or translated from
data, and the construction of algorithms for extracting and annotating-tspac@aths in
massive datzets.
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1 Introduction

Walking and related locomotids of significant interestor manydomains but manyaspects of
walking are difficult to experiment with in the realorld and can only bereliably explored
through experimentation with computer modéls.be useful, models need to be realidtigh-
fidelity representation diuman walkingpehavioris commonly desire@nd modebuildersoften

use agentbased modelfABMs) as a mechanism for representing individual agency in
simulation, but in many caselely specify the models witboarse, abstract representations of
movement(Hughes 2003)One of the reasons for this tise difficulty of collectingindividual
behavioraldata in natural contexts particularly for situations in which many walkers are
consideredBehavioralinference, in particular, requires tinsensuming observation and coding
(Schwartz and Schwartz 1955joreover, there are often many emergency scenarios for which
it is unrealistic to collect data on the grouRtkcent developments mobile positioning systems
havemade his easierenablinga ut omat i ¢ r epor t i fiogn casriedlopagoap | e 6 s
aware devices(Torrens 2010h) but sgnificant challengesremain in reliably associating
movement pathsvith the reasonsvhy people move the way that theyod In essence, few
pipelines exist to mawalking datato behavior Developers of agefitased models consequently
find it diffi cult to derive informed rules for agenwalking behaviorat the scale of individual
agentsand this leaves them little alternative but to empddngtract, proxy representations of

movemen{Torrens 2010a)



In this paper, wentroducea schemeto resolve this problem binfusing movementsimulations
with automaticallyderived movement behavioderived frommachinelearning on trajectory
samples We will demonstrate thaindividual walking behaviorin modelscan be machine
learnedfrom simpke movement samplgsnapshotf positioning and timing of locomotion)
This provides an alternative to coarse models of movement. It also extadidi®ral agent
basedtransition schemes, whichardcode agest@ovement rules o a modela priori. By
contrast, ar agents an developtheir movemenbehaviordynamically allowing greater model
flexibility, because they leamovementanew individually, for every agent, at every step, for
every choice that they encounter in simulatidde also introducea high-level behavior
controler that allows modelusersto specifyagentbased transitionas Finite State Machire
adding further flexibility in repurposing trajectory data to new scenafiosddemonstratehe
value of our approach we will illustrate several application scenariosusing different

experimental data.

The main advantages of our approach are as folldwsschemas dataagnostichecauset can
consumesamples from any source that provides @sta movement trajectorylhe modeldoes
not necessarily assume a specific underlying theory aoauid even be applied to scenarios for
which no theory yet exists.e., it could be used to develop theory from dathe scheme is
flexible and can be applied to any environment or scenario in whiobement is needed
compared twther approaches, which emplowalitary global model that all agents will access
andthat mapsnovement to aingle datgpoint in a library, so that only models that match the

specific scenariogecordedn the data librar can be simulated.



2 Related Work

Behaviorbased ABMs representthe agency ofwalkers (usually pedestrians on streets)
simulation using transition rulethat describe how agents relat&rmation that they encounter
in simulation to their behaviofBenenson and Torrens 2004yansition rules are often built
using movement proxiesuch as random wak(Schweitzer 2003pr shortespath planning
(Nieuwenhuiseret al. 2007) In other cases, rules aseurced in actual behavioral mechanisms
occupancybehavior(Gipps and Marksjo 1985kteering(Reynolds 1999)vision (Turner and
Penn 2002) spaceime agendagqParis et al. 2007) behavioral geographyTorrens 2007)

collective behaviofPelechanetal. 2008) or psychology(Allbeck et al.2002)

Data-driven modelof movementprimarily use motion samplesas input toprocedural (rather
than behavioralheuristis. Motion planrers ( Wi t ki n  and , Poexample, fusel1 995)
kinematic solvers to map motion cap data to synthetic charadtegs in simulationln other
casestrajectory data (from Geographic Positioning Systems (GP@jleo camergsor radio
triangulatior) are used to estimate plausible sptice paths of movementhis can involve
classifying trajectaes into types of movemen{Dodge et al. 2009; Makris and Ellis 2002;
Johanssomet al. 2008) or the development of heuristics to estimate likely next trajectories from
given pathsKrumm & Horvitz (2007) and AlvarezGarciaet al. (2010) introduced methods to
achieve the lattefor cars, for exampleLerneret al. (2007) introduced a trajectorprediction
model forpedestriammovement. Thie schemesnabled searching throughcorpus btrajectories
(extracted from video footagend copied likely trajectory from that libraryto animated agent
characters in simulatiorusing similarity of real and simulated positioning relative to fixed
infrastructure and velocity of ambient pedestsiaasa mapping Lee et al. (2007)introduced a

similar scheme for group movement, using locally weighted learning to match agent movement
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to videoderived trajectory sampleZhanget al (2009) presenteda statistial learningbased
steering model to predict agsnéelocity and direction from trajectory datasinga velocity
space(a set of quadratic curves fitted from trajectory Yl&daletermine the candidate trajectory.
Nguyenet al (2005)introduceda hierarchicalhidden Markovmodelto learn movementrom
trajectory databy treatinginternal and external factors thaimulatel agensd movementas
hiddenforcing factorsfor transitionbetween movement type3ankowski and colleagues have
developed an innovative scheme for inferring movensgehtsfrom trajectory data inherent in

metadata associated with Online phoégdy repositorie€lankowskiet al.2010)

The trajectorysampling approach promises to help in overcoming the problems of building
individually-rich movementABMs that match realvorld behavior, but challenges remain. Data

is a first challenge: datarovidedby positioning systemare more precisthan those collected
through observation(whether the observation is made by humans or pattern extraction from
video footage)becausethey are immune tmcclusions(Mezouar and Chaumette 2002hd
shadowing(Nabbeet al. 2006) But, observation can providsntextfor position, relating it to

the physical environmerind human terrain in which movement occur@@dllis et al.2004) In

our approach, eavoid having to tradeff the two,by (1) usinghumanobserved trajectorgiaa,
wheretrainedobservers are able to resolve obfuscating fac{@jsusing orscreen GIS for data
collection to provide guiding information that assists observers in tracking movement with
positional accuracy(3) using spatial analysis irpostprocessingto index datapostions to a

physical environmengnd @) using simulation to generate plausibl@bient human terrain.

Scale presents a second challer@peneof the trajectorymining methods we discussednsider
the macrescaleof movement (the trip); others consider the miswale §tepby-step. These

scale differences also appear in behavioral representation. Some schemdsghréatel



behaviors(i.e., those involving significant conscious thoygand others focus olower-level
(subconscious, autonomioghavior Really, all of these factors control human movembnour
approachwe continue a recent traditigRelechanet al. 2008) adopting a mixedgcheme. We
pay particular care to represent movement at fiprapriate scale byl) treating low-level
behavior (submovements within a path) at timeicro-scaleof movement (the person, stbp-
step)and(2) managindrigherlevel behavioras the conscious selection and assembly of lower

level behavior at enacrosale.

The modeling approach or philosophy that is used can provide a third challenge, because it may
lock a modeluser into a particular way of framing her simulation, rather than flexibly supporting
exploration.Many of the approaches we outlthare used irtomputer graphicéThalmann and

Musse 2007pndtheir designis ad hocto those applicationsuilt for movementin particular

spaces, places, or contexiscause they are requiréat repeatable (procedurafsks.Realistic
representation of behavior may not evam needed and trajectenyining models are often
applied adook-up tables which cannot be generalized beyond the specific-datausedWe

adopt a different approaddy (1) learning (rather than simply mapping) behaviors from data, and

(2) by codifyingthe produced knowledge ingyntheticbehavios that can be ascribed to new

places, spaces, and contexts.

3 Methodology

An overview of our approach is illustrated in FiguréNe collected a range of trajectory data,
which we stored in a Geographic Information System (GIS) and we used spatial analysis to
calculate compound metrics that add value to data by describingdiminsions ofwalking.

We developed a companion scheimemining those data and building knowledge for individual



agents in ABMs by learning themovement behavioof real walkers (children indoors and
outdoors in school and adult pedestrians in outdoor urban settimgg)gh data access,

classification, cluering, weighting, and matching

[Figure 1 goes here.]
3.1 Building Trajectory Samples

The first task is to build a library dfrajectory sampleghat captureessentialand distinct
characteristics ofvalking movement.Realistically, any dataset that can be transformed into
locationtrajectories could be useWe used data on real and synthetic (simulated) movement.

We ran a sixmonth study in an American preschool in whickinedhuman observenssedGIS-

based tracking software that weveloped to runontabletP€so di gi ti ze hedi |l dr e
to five) movementThe GIS provided a cartographic interface, upon which obsergeosded

the motion ofwalkersby sketching with a stylugFigure 2); the system than interpreted the
postion and timing of those sketches, which was stored in a spatiotemporal dabidsga of

thei nt erface was influenced by -lorydéial aub, arelwvaser s 6
developed to maximize easéuse(labeling of common movement soustsnks; hierarchical
controls that mapped to common taséByl toguide observesd handto-eye coordinatiorwhen
sketching through epresentation of building floorplans and key infrastructme grid-lines
representing 1fon-the-ground.Observers wereestricted from interacting witthe childrerand

data were collected with participant approval and subjethdéooversight otthe Institutional

Review Board for the protectiorf buman subjects. (Additionadpcialinteractiontags were also
ascribed towalker paths by observers working in tandem, who annotated -betiavioral

interactions between participant#/e do not make use of those data in th&per but we are



investigating how it might be used in further studi&aja were collected during e& schedule,

each weekday, for six months.

[Figure2 goes here.]

3.1.1 BuildingCompound Variable® Characteriz Movement

The next step is to add value to those data, by determining essent@bundcharacteristics of

movementThesewere determined a®llows.

Selfmoving speed The instantaneousnoving speed(i ) of a walker "Qat sampling point
(location) ] on a trajectornyat time 0 was calculated as distante the position at the previous

timestepd pon a per s o qualisied bythedurationt obtheynove

i n n jo o (i)
Selfmoving direction was calculated using a local coordinate sys(eigure 3). A walketd s
moving direction) at sampling point) andtime 0 was calculatedas the offset angle froiits
current moving directioffwhich is thevector from its current positiom) to a next position

N  p along the trajectofyto the local x-axis. By transforming to a local coordinate system (as

opposed to a global coordite system), agentgam draw upommany more trajectory samples to
train their behavior (Figurd). Rather than a query returning one sample trajectory, the local

system allowdfor abundleof samples to beeturned, thereby bettanforming the model.
[Figures 3 and4 go here.]

Intended moving speed and directi@re important characteristics because ttaydistinguish
different movementbehavios among different individualsvenfor conditions inwhich walkers

might havethe sameinstantaneousnoving speed and direction. Forctability, we calculatd



the movement intention ofvalkersd speed(i ) and direction(Q ) asthe average ofen
previoussampling pointsalong atrajectory

B i j@Q pm

. 2
B i J7@Q pm @

o B Qj®Q pm .
h B QjBQ pm 3)

Distance to targetWe assumethat the end poina destination or waypoindf thetrajectory of
eachwalkerwasits moving targe{the human observes our studyrecorded data in this way)
andwe tagged thisimply usingEuclideandistance froma current sampling point to theoving
target (If the sink for a path was otherwise unknovircould be implied by extended periods of

motionless behavior.)

Environmentd variables We accounted fowalkeis 6 i nt er acti on with
using a detectionfilter to represent visianThis filter was asector centered on each agent and
oriented in its direction of travel, with useonfigurable radius and a 120giee angle, i.e.,
average healthfreld-of-vision (Cutting et al. 2000) All static objectsthat the filter passed over
as an agent movedere recordedin the local coordinate system we describ&chding off
computational efficiency and detail, we divided the filtdoitwelve equakulsectorgFigure5b),
calculatingdistance tenvironmentabbstaclegper subsectomproducing a (alwaysnique in our
tests) twelvaedimensionalvector This vectorcould be interpreted as signaturdor compaing
similar data in thdrajectory library. Becausethe signatures are expressed in a local coordinate
system, a query to the library teturnmatching archived trajectory samples will produce many
results.For example, in the scenarios depicted in Figyreamples 1 and Brovide different

built environmens, but both samphg points haveequivalentlocal relationships to their
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surroundingsand the nextactiors along their trajectoriesre the same: moving towards free
space without obstacleShis contrasts with global approachssich asLerner, et al(2007],
which only return a singlsample per querpecauseonly the specificcontext of a particular

environmenis considered; outside tfis context, tat model may no longdve appropriate

Human neighborhoodvariables Walkers generallyavoid collisions with other people in their
vision and ina small zone of awareneasound(including behind)themselvegCutting et al.
1995) The latter zone usually producesugh awarenesdbecause of aural and olfactory sen
memories of passing people, and cast shadaths) former is usually a reasonably accurate
vector (Vishton and Cutting 1995)To represent this, we definedcacular zone for polling
(human) neighbohood information allowing its radius to be determined bythe walkerds

instananeousnoving speegdas follows.

1 i nQQK i 4
Above, i denotesthe detecting radiug, is a userdefined constant and is a userdefined
minimum observation rangéor the walker. The circle is useconfigurable to allow for
specification ofdifferent detectingadii. In dense conditions, for example, the area may shrink to
track only immediate neighbo(¥ishton and Cutting 1995For efficiency,we partitioned the

circlein eight equal sectorin whichdistancefrom an agentto its nearesineighboringagentand

the neighbor 6s s peeocedddpraduang anieighdimensiooahveatoe r e

[Figure5 goes here.]

10



3.2 Data Control

The next step is to build law-level action model that can use the compound vectors we just
described to predict movement, and to construbigaerlevel behavioral model to manage

actions.

3.2.1 Action Control

The action controller delivers three autonomic behavialttough others cdad be considered)

(1) | ocomotion from an agentds | ast agemdssni t i on
how to avoid collisions with the physical environment, and (8lling agents how to avoid
collisions with nearbyhumanagents.in both cdlision-avoidance schemes, agents determine

their next actiorper-encounteri.e., without a global algorithm providedpriori.

For example, in the simulations shown in Movie tLlaminitial stage(0 1), each agenvas
assigned atart position destination and abehavior (an action selected using a highlevel
controllel). Each agent uskthe locomotion model to predict its moving velocity and direction.
At the same time, each agesdanned for anddentified potential collisios with other gents
and/or the physical environmenit a potential collision was detected, the agemftedits action
from usingthe locomotion model to usin@ collision avoidance modednd thus adapd its
moving velocity and directioio produce a collisioffree path Once the agent resolved the
collision-avoidance maneuver, it revedtback to thelocomotion model tacontrol it motion

through space and time toward thestination(Figurel).

Shifts between qualitatively distinct movement @it are handled by a highével control

schemethat i r st ¢ o n s icurentm®ving conddian@,. M he @atential for transition to
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anotheraction Ay (whereq is the query time st¢gs determined as followgWe considered

locomotion and collision avoidance, but others could be added.)
0 f x ¢ 0HhO (5)
0 i x # 0 ho (6)

A4 is atwo-dimensional vector{next moving velocitynext movingdirection] and C, is a
combination ofmulti-dimensional vectordM is afive-dimensioml vectordescribingagna ge nt 6 s
motion variables[speed, direction, intended speed, intended direction, distance to|t&get
12-dimensioml vector representingan a g e rehvisopmental variablegdistance to nearest
obstacle in section 1 to 12 msectordetection areh N is al6-dimensioml vectordenoting an

a gent 6 sneighhorh@d informatian[distance to nearest agent in section 1 to 8ain
circular circle detection area, moving direction of agent detected in section 1].tdhs
producesa 17-dimension vectorfor locomotion and a 21-dimension vector for collisiorn

avoidancea 38vector parameter space in total
3.3 Learning from Data

Once compound vectors have been generated for trajectory samples, the procedure of learning
from the data can begifirst, data are organized for fast queryitiggnmapped t o an ag
guery in the simulation, clustered as bundles of relevant dateedrduned, and delivered to the

agent.

Collected data are classified into behavioral categories (e.g., walking, running), problucing
action-condition samples 6 5 , whereQ pltt8 hj. These data eitheomealready tagged

by behavior or the category is determined from velocity and sféedaskof finding relevant
samplesper agent querynvolves searching a small set @&ftraining samples™™ o6

12



where'Q plthB R, are those most similar to quarpinté (ana g e rinstanneousoving

condition).

Finding similar sampless difficult, especially when the dimensiality of querypoints is high.

Tan et al. (2006) showed that the computation time for matching can be improved with
approximations ohearesineighborsamples, with relatively small ertdNe achieved this using
the K-NearestNeighbor(KNN) algorithm (Arya et al. 1998)to find k most similarsampledrom

the trajectorylibrary (we interfacedMount and Ary@® $1997) ANN library in our code) KNN
organizes samples intokaDimensional(k-d) treein memory(Yao 1977) wherek denoteghe
dimension of vector spader eachsample We stored ferent types of samples in differerk-d

trees. (For this study th& valuesof thek-d treewere 17 dimensios for locomotion sampleand

21 dimensios for collision avoidance sample$nce orgaized, k-nearestneighborsmay be

sought from the library based orthe distancefrom a query pointd to a sampled , where

"Q phtfB h). We usecEuclidean distance between two vector spacesvimanorm form:
Q oy A N& 7
Above,wandr] are two vector spasef sample poind and query poind .

Each agat use KNN to searchfor k-nearest most similar (to its current statusgmplesand

these samples are then used to calibrate either a locomotion or a collision avoidance ahodel th

wi || enabl e prediction actiond .hOnmce thg egernt eartsf ut ur e
moving actionand movs to a newposition it re-queles nearesisamples and calibrag@ new

model again to predict itsext movementTo facilitate regression and to restrict the number of

overall samples in thk-d tree, he value ofk should be larger thathe dimension othe vector

space of condition variablés ; we allowedk to beuser and scenari@onfigurable.
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3.3.1 Choosing Clustes as Bundles of Relevant Trajectory Samples

Results of agent queries an@nMarkovian so k researched samples might contain distinct
clustersrepresentingompletely different moement actins, e.g., when approaching the middle
of a wall, people mayurn right or left to avoidhe wall with equivalent reactiofrigure 6). To
resolve equivalenciesn simulation we apply theK-Means Clustering(KMC) algorithm
(Kanungoet al. 2002) as selection logic.KMC allows us tofind groups of objectghat are
similar or related to one anothdwut alsadifferent from(or unrdated tg objects in other group
This is atieved by associating clustesith a centroid pointso thateach pointnaybe assigned
to the cluster with the closest centrdifihe number of clusteis must be specifiedve defined

0 o) In our work, we first calculated searched samples using KNN and we thpplied
KMC to every sek to produce clusters. The reasonability of a given clugteras assessed as a
possibilityr) of selecting, givenda , the mean value of output values in clustér , the mean
value of outputaction of the previous query poinand0 , the number of samples in cluster

whereN is the total number of samplkesearchedy KNN.

n Qwn a o 0jo (8)
N has possibleositive correlation with the deviation of previous queried samples and the
number of samples in each onewf o clusters so we removed the cluster wiimallestp
valuefrom consideratioriirst. We applied a random selection for the remaining pwaluesif
walkers were very close to each othdp represent stochagty in movementbehavior We

employeda configurablethresholdto determine when to apply randoess;otherwise, the

cluster withthe highestp value wasbe chosen.

[Figure 6 goes here.]
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3.3.2 Locally Weighted Regression

After we chooseappropriatemovementaction samples from trajectory database, wamruse
samplesto calibrate simulatedlocomotion and collision avoidance modets real data We
performed calibration usindpcally weightedregression (LWR)(Atkeson et al. 1997) in
conjunction with KNN andKMC. LWR enabledocal fitting. Unlike traditionalregressionfor
which a single global modéd estimatedLWR consumes training data only inn@arbyregion
around the location of a query point whétirfg a prediction surface, working on an assumption
that closer samples have more impact on movement than thaséistdnce We applied
Euclidean distance betweamuerypoint and any nearby poinvith a Gaussian kernel function

m U 'Q p to weight the distanced betweena sample point® and a query pointn.

Alternative functions could be used.
VQ A@PQ 9)

For our applicationsye wisledto estimatean agenés moving speed and directigoer situation,

sowe neecabdto fit two differentLWR models as follows.

AT | Bl o - (10)
Wh I Bf o - (11)
Above, wp and wp are two outpud (speed and directigrof agenti.| andl are

interceptsof the regression linet is the ' Q element of thek-dimensioml explanatory
variablesi.e.,the moving condition variablegefined informulae (5) and 6). - and- arewell-
behaved disturbancerror terns with zeremean andconstant varianceg andf are the

regression coefficientse neeédto estimate from training data

15



In matrix noation, theunknown regression coefficientectos| andf of the twoLWR modeb

could beestimated as follows.
| W78 O7TW (12)
I W78 O7w (13)

Above, X is a matrixin which each row isa moving condition vectorw. W is a diagonal
weighing matrix in which eachdiagonalelementx is calculated using Gaussian decay

function
X Qwn Q9Q (14)

Above,d represents the Euclidean distance betwepuat sample pointanda querypointandh
is a bandwidththatdefines the scale or range over input samgptescomputatioml efficiency,
we appled the nearest neighbor bandwidth selection that equal tothe distancdrom query
point to the Q nearesttraining samplepoint. This causesthe input data volumeto change

according to the density of searched neadayples

3.3.3 Tuning

LWR may fail to eturn acceptableutputif training samples are not wedelectede.g.,when
thesituatiors encountered by agents simulationaresignificanty different from anyrealworld
samplesor they arecompletely novel, with no analog in the datao an assessment fiff is
neededHowever, itis costlyto estimategoodnes=f-fit of our LWR modeldecause thesun in
real-time i.e., LWR is appliedat every simulationstep of every agenEachLWR procedure
uses KNN and KMC and theomputationatime required by LWR depends heavily on the size

of all sample spaces and the length of independent veétorsexample, fiwe simulate the

16



movement often agents withthirty frames per second resolution, LWRould need to be

executept T @ 1 o 11 T times per second.

As an alternativao estimating prediction errokye defined a simple rule to tumxcessiveor
unacceptableutput ofthe models First, in each LWR procedure, after usikylC to identify
the most reasonable clusteng calculatd statstical indicatordrom the samples in the selected
cluste: minimum, averageand maximunvalue ofmoving spee@nd moving directionSecond

we defineda criterionto determine if the predietl outputswere acceptable or not by checking if
the output mowig speed and directioslffin the range of minimum and maximum moving speed
and direction, which we calculated in the first step. When output values exceed the
acceptable valuenge,we tunel the outputs by using the averagewimg speed and diraonh as

asubstitutefor the unacceptable outputs

3.4 Assembling Behaviors as Finite State Machines

Atop the scheme we have described, we designbijh-level Finite State Machine (FSM)
controler, as ascenariebased configuration modeln the FSM,each learnindased lowlevel
action modeis treated as ainglestateand the F®I determins transitions between statess a
higherlevel controler. This allowed us tendow simulation agents with the ability to Rard
match different lowetevel behaiors, to account fodifferent behavioral facultieas different

duratiors and transitiorpotentialsof the low-level action model.

Take a simple scenario as exampleif users wshed to explore or reproducan evacuation
scenario, they could firsbuild three lowlevel action modelswhich could be learnt from
collected trajectories of realistivalkers. Supposethat three learninpased modelsvere

provided walk, run and stand and all agents lththe same movement behavior. Then, users

17



could defire a FSM for all agentd={gure 7). This FSMmight dictatethat each agent will start
with arunning action ima panic situation, and end with a standing action when they eeaafe
destinatiorfor assembly A g e rnvity statetransitto® from runningto walkingd couldtake
placewhen they successfullgscapeUsers could also defirestate transition from running to
standng when agents get stuck @ crowd or assign symbolievaypoints to agent§a start
position, an exit waypointand a safeassemblyposition for example) Other control models

could be implemented per applicati@vent,demographic, place, etc

[Figure 7 goes here.]

3.5 Analyzing Simulated Movement

We calculated metrics of movement¢ompare and contrastatworld and simulated pattend

to assess differencémtweensimulation scenariodVe calculated the following characteristics

of movementrelative sinuosity as an indicator of perturbatifpedestrians prefer to move in

relatively straight lines(Hillier and Hanson 1984) scaling as an indicator of the spatial
hierachy of actionr e act i on, and trajectory preservation

generate reatic movement at micrgcales.

Fractal dimensionmeasurs of the ability of a patha fill space. This can be interpreted in two
important ways. First, it indicates the level of behavior: agents that move predominantly-by low
level behavior (automotive locomotion) may generate paths @itp, i.e., close to a straight

line. Walkers thatusecollision avoidance may produce paths that fill more spacepi.e.D

¢. Second, differences in the value can be used to measure relative sinuosity between agents,
environments, models, samgdets, scenarios, et®We estimated fractal dimensid@ usng

traditional divider method@Mandelbrot 1977)Mean fractal dimensioriQ) was used to correct
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for known overestnation errors in truncation when using the divider method at large scales

(Nams 2006)

Mean cosine of turning angléA T -®indexes relative straightness overeanire path(A 1 -0
p is straght) by relating total path length Ne)) with step lengthsstep for differentsized
dividers(Nams 2006)

i

i RQ0 p 11T @AT-0p (15
I %‘Qh

Correlation between successive tuemgles(4 /' @ @easursrelative directional preservation

on astepby-stepbasis(Nams 1996)

Approximate Entropy(ApEn) indicats the likelihood of similar pattern® manifest in a time
series(Pincus 1991)ApEn will be relatively smalfor data that contain many repetitive patterns
(data that are highly structuradnd high fordata with a less predictable process (data with
complex or random structure). Given da¥a with 0 continuous observations, we defiha
sequence ofi obsenations at locatiofQ'Q® ph) , as a pattery "Q If the difference between
two patternd | "Qandn " is less than a predefined criteriop we may regard these

patterns as similar.

6

BN gy e Y 5 1 \" - 1
0N o¥hihw aso = (16)

Above,a specifies the pattern lengtfodefines the criterion of similarity between patterns, and
& & is the prevalence of repetitive patterns of lengthin “Y, which can be calculated as

follows.
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6 E ® 0 4a p (17)

Above,¢ @ is the number of patternsin that are similar tgy "Q

4  Experiments

We developedseveralstandalonemachinelearned,simulationsto prove the usefulness of our
modelusing different scenarios and datBarameterization of the scenariedetailed in Table
1.) We alsocompared machinkearned movement to realorld movement, using the preschool
data we already discussed, as well as GPS trajectories that we obtained fpedesittiansn

downtown Salt Lake City, USA and Yokohama, Japan

[Table 1 goes here.]
4.1 Preschool Childrend MovementBehavior

In this experiment, wérained the model on the preschool data desciibesgction 3.189,518
sampls wereusedfor walking or runningand 70527 for cycling (Figure 8) Arbitrary source
andsink locations in a simulated replication of the preschool environmer provided and the
model had to learn how to move free from collisions between these locations, using only the
training data.The resulting simulation is shown in Figure 9 and Mdlié¢/isually, machine
learnedchild-walking appearedppropriately childike with some unneeded sinuosity, which is
understandable, given that the model is sourced from data of mobile todidléns. cycling
scenario,machinelearrning child-bikers managedo move along a track, successfully turning
corners whilestaying within trackboundarieswith visually-plausible movement fosmall

tricycles with a top speed of ~1 mile per hour.

20



[Figures 8 and9 go here.]

Values of fractal mearlQ) for realworld andmachinel ear ned ki dsé wal ki ng

a good matchO~1.02 for observed tricycling arfd 1.01 for machindearned tricycling/O
1.02 to 1.16 for observed walking afd 1.02 for machindearned walking (Table 2). These
values imply that mvement occupied a relatively small amount of space and was therefore low
in sinuosity and close to straight, considered overethtge path However, machindearned
kidsb6 movement thaadreabnvorid abisagvitiors docal scadesh 1 -© 0.98
for machinelearned tricycling, compared to 0.56 to 0.79 for observed tricychnz© 0.91
for machinelearned walking, compared to 0.64 to 0.82 for observed walkingreater degree
of directional preservation was reported for machésenel movement, stepy-step @ /' -©-O
T8t @for machinelearned biking and 1@t ¢for machinelearned walking, compared torn® do

@ obor observed biking and @ to 1@ )Xfor observed walking). Again, this indicates that

machinelearned movement wagscally straighter than in the real world.
[Table 2 goes here.]

Consideringt h a t t playidgl ise oftendargetless, randomand disordered, the ApEn
me as ur e me nt smoweementirhprdsathoabonld Ise highj.e., movement should be
unpredictable. Tlsiwas evident in our measurements (Table 3): the average ApEn values of real
chil drends wal ki n,ganduuening anglesvgre abautcO6g, 10.62r aand 0.78,n
respectively close in value to ApEn for machiearned walking, which were 0.65,82, and

0.71, respectively. By these measures, our madbar@ed walkingnodel produced plausibly
complex behavior. The average ApEn values for maelei@eed cycling velocity, acceleration,

and turning angles were 0.97, 1.13, and 1.03, respectivglehihan the average ApEn values

a

for real childrendés cycling, whable4). Thisampkes 0. 52,
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that our machindéearned modebverestimatedthe amount of complexity required to produce

movement by tricycling.
[Table4 goes here.]

All of these valueswere considerablyhigher than the same ApEn measurements of real
pedestrian walking in Salt Lake City (0.18r velocity, 0.14 for acceleration and 0.18for
turning). Adult pedestrians can feasibly be considered as walkith greater skill and purpose

in cities than toddlers in a preschanight da Because adults have the ability to control their
moving speed and turning angles to move smoothly and comfortably towards theirtheget,

will usually changeheir movingvelocity, acceleration, and turning angles progressjwehjch

will persist more continuously across a trip. In other words, they are more predictable than

toddlers.

4.2 Meta-Simulating Movement While Playing Capture-the-Flag

This simulation tasked modeledeanys with the goal of capturingstéationaryflag in a simulated
spaceusing machindearned behavior to mowas quickly as possible while avoiding collisions

with fixed objects.In this case, we usedachinelearning as anetaABM. First, we simulated

mov e me nt among agents i n a cr o(h08% ddeerisgnnvodet o n me n
(Movie 1). Second, we used 11,000 trajectory samples from this simulation tonlearn
movement between arbitrary (nreampled) origins and destinations irsecondagentbased

simulation that relied only on our learning scheme (i.e., the second model did not have access to
Reynol ds 6s a |Beauseithe focns waa an awitingll obstaclesrdy, one agent

was introduced to the simulation at a time. The mael@aming routine @ produce visually

smooth,collision-free movement for ttse scenaris (Movie 1). We also tasked the machine

22



learning model with producing movement tthavas free from collisions with fixed

(infrastructure) obstacledwith mobile (other agent) obstacles (Movie 1).

Values of factal metrics were close to those for the original simulated Reynolds steering paths,

as weremetrics for ApEn velocity, accealation, and directionResults for tk machinelearned

metaABM reflected the heuristic of the Reynolds algorithms, which was to move agents to
deginations by smoothly avoiding collisions. Agebtgelocity changewas implemented by

applying a braking oraelerating functioowhichyieldeda f ul |y fApr ediwasabl eo
apparent in our ApEn results:ovement by machinkarned capturéheflag behavior was a

plausible match to the original steering data produced by the Reynolds simulation {Table 4

4.3 Quotidian Walking along Downtown Streetscapes

In this experiment, wantroducedtwod qualitatively differend sets oftraining datg generated

using Reynold$1999)steering algorithmg1l) a game of captwtheflag in an obstackittered
environment(fixed obstacle avoidance) and (2) agagent avoidance in free space (mobile
collision avoidanceMovie 1). These data were used to feed a madeeming model of
everyday walking behavior along a simulated streetscape (our schemes aimulated
environments to be specified using ASCII, bitmap, or shapefiles; agents can interpret boundaries

in any of these formats)

The idea in this scenariowas to testthe ability of the FSM controller to switch between
gualitativelydifferent mowement behaviors (walkingstopping, steering to avoid collisions
avoiding fixed and mobile obstacjesAgentsdid move in a visually realistic wato their
destinationsemploying sequences of walking, steering, and collision avoidance to get out of the

way of fixed and mobile obstaclésigure 10.

23



[Figure 10 goes here.]

We compared the resulting machiearned simulation to avement paths for reaborld (adult)

urban pedestrian@igures 11 and 12fractal values for the America®( 1.04) and Japanese

(O 1.16 to 1.21) samples differed, reflectitige relatively denser pedestrian streetscapes of
Yokohama, in which pedestrians must execute a greater number of cedhimlance
maneuvers to avoid bumping into other peoqefferences also presented in values for
directional preservation: the Japanese examples were significantly less straight over an entire trip
(AT-© 0.36 to 0.4pthan the American examplé\(I -© 0.92). A / -©u@xs strongly negative

for the urban samplesuggesng a lack of directionagbreservationThe machindearned urban
pedestrian model generated measures of fractal m@an 1.02) and directionagbreservation
(AT-9 0.99 that corresponded well with the American movement case, but the fractal measure
was significantly less sinuous and the directional preservation was seatghh the Japanese
samples. This could, perhaps, be explained by the lower number of potential collisions in the
ambient pedestrian traffic in that simulation, compared to the yealidowntown Japanese
streetscaped-or the same reason, wright reasonably expect pedestrian movement in the
Yokohama case to be more complex and unpredictable than the American case. Indeed, we
measured relatively high ApBralues for Yokohama moving velocity and acceleration: 0.94 in
velocity and 0.59 in acceleration (see Table 3). The ApEn measurement of direction was only
0.16, which could be attributetb the tendency for dense crowds to <gwljanize into
spontaneous fes of unidirectionamovement(Helbing et al. 2001) Machinelearned urban
pedestrian movement produced ApEn velocity and acceleration values that fell roughly halfway
betweerthose for realvorld walking in Salt Lake City and Yokohama (Table 4)haligh ApEn

direction values were a very close maftwhmachinelearned and reakorld urban movement.
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[Figures 11 and 12 go here.]

5 Conclusions

In this paper, we introduced a novel method for macl@aming human movement behayior
onrthefly, from large databases tfajectory sampledt is important to note that this is distinct
from (1) simply reproducing movemepatternsin simulationand from (2) usinga modela
priori. Using a series of experiments to simulate-reaild scenarios, we have showmat the
scheme can be used to automatically generate redtiskong and quantitatively plausible
movement behavior for nesampled situationand that different types of trajectory data can be
inte-mingled in the scheme, as need&te approach thawe introduced is novel relative to
other machindearning schemes for movement, because it isagtastic and because it can be
applied to different environmeniwithout the need to be reconfigured anew. This novelty is
achieved by modelingyeighting, training, and applying spademe specific models per agent,
per location, and per tirsgtep in simulation, which contrasts with standard approaches that use

global modelghat may work only on particular dasats and for particular scenarios.

There areother potential applications of the work.eWocused on human movemehtt the
scheme could be applied to animal or insect moveetted, data for these contexts are often
more readily availabl¢Nathanet al. 2008). Our modelcould be adapted to work on retne
datafeeds, such as those generated ftooationbased services. THESM controller that we
introduced, while straightforward, could be expanded to encompass more complicated (agent
based, or other schemes) misger to dock to existing modelghat need nonhecessarily be
movementased Indeed, our scheme could be used to spatially emalslenobile modelsThe

scheme could also be used for whisggxperimentation in agefitased models with hypotheses
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that areinformed or translated from data and the construction of algorithms for extracting and
annotating spaegme paths in massive dasats This potentially allies our scheme with

developing functionality in computational social scie(icazeret al.2009; Torrens 2010b)

The approach, as presented, does have some deficiencies and room for improvement remains.
First, our modeldepend heavily on trajectory samples. Because learning is -dilgen, action
models anonly bereliably learred from representativesamplesThis means, for example, that
ordinary data (e.g., commuting) could not be used to train a model for extraordinanpembve
(e.g., panicked stampedes) new model would need to be developed for these behaViwes.
precision ofthe machindearningis also influenced by collected trajectory datad dfferent
data sources (observation, GPS, video sampling) yield diffachrantages and disadvantgges
no one technique is both automatic and predisiitively, combing severatlifferent data
sourcesvould providea solutionto this problemSecond, we have abstracted from discussion of
the computational cost of our schenhMemory is not a problemwe employed &-d tree to
efficiently index huge sample datasets. Howeverquirements forKNN querying and
regressiorbased learning will increase with the amount of training iditesed to the algorithms

at run time.

Developmat of this scheme is ongoing and in the future, we fwaxtend the approach to other
movement behaviors, covering different demographics of agents and moving coratiibtts
accommodate neaealtime data feedsWe also plan to introduce highlewvel movements,
beyond local choreography to include tglanning, patkplanning, and wayinding. We are also
investigating methods for accelerating the computation of the model using-goairsed mult

scale computatio(Kevrekidiset al.2003)
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Movies

ATGISmovewmw i s attached with the submission of

that the machinéearning scheme is capable of generating.
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Figure 1. The programmatic flow between different components ddwhrkevel action model
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Figure2z Trajectory samples of childrends movemen

who sketched their movement in réiahe, using a Gl$ased GUI on a tablet PC.
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Figure 3: Agent (in-simulation)positioning relative tohte local coordinate systerm this local
coordinate system, theaxis denoteghe vectorof moving directionffoma p e d ecutrenti an & s
position toits target andhey-axisr e pr esent s its direction as a

location to its dstination, rotated by ninety degrees.
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Simulation run-time

&~ Geosimulation 0.1

4, variable frame rate (82 fps)
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Figure 4: The environmental information of sample point Two candidate trajectory samples

are shown at the bottom of the illustration; both may be selected by the model; although their
global geographies differ, thimcal geographies around the agent are equivalent. Moreover, the
agentdés trajectories are equival ent (moving

returned to a querying agent as training data for its movement mogeto(®parison, a global

model would only be able to return one sample, marrying an agent to that particular scenario.)
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Figure5: Neighboring humans are polled using a circular awareness zone.
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Possible paths to avoid a wall

© considered agent
| obstacles

— moving direction

e« moving flow

r~— trajectory
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The three clusters of trajectory samples
for that point in space and time

Figure 6:Choosingclusters fran researched samplddany potential paths can be taken to avoid
a wall. Our scheme can sweep a full sanrgpace of trajectory samples (from readrld choices

to avoid the wall) to calculate the most likely future movement.
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End

Figure7: A sample of Firte State Machine ashagh-level control model
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Figure 8(a)
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time

Figure 8(b)
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Figure 8(c)

Figure 8. Sample trajectories for young children in a prescli@pMalking; (b) running; (c)
riding a tricycle. (Scale bars are inappropriate for 3D graphics; the area represented by the

graphics corresponds to 800 square feet on the ground.)
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Clock: real-time mode, variable frame rate (13 fps)
Camera: fixed distance offset

Figure 9. The chil dr-emedAs agend (pirknies totmovmloetiveenani n  r u
arbitrary origin and destination (the smaller red circle on thehkidside of the illustration,

while avoiding collisions with furniture and walls (green) in a simulated classroom. The agent
uses a detection filter (white) to pdtajectory samples. Movement is driven solely by our
learning scheme and trajectory samples. Thetima environment is rendered using Craig
Reynol dsds OpReyndkls 1909 pbuati ¢de graphic | ibrarie

steerng behaviors).
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4" Trajectories

time (trajectories)/height

Figure 10. Two spaetme paths from the urban pedestrian simulation are illustrated. The space
time paths of pedestrians A and B do not cross, i.e., they avoid colliding. Both agents also avoid
built infrastructure in their environmenthile moving to their destination locatioris. the inset,
pedestrian B applied steering to avoid bumping into pedestrian A, as evident in the intersecting
area of their 3D spaed@me paths (two dimensions of space and one of tilfild)e space is

simulatal as so a scale bar is somewhat irrelevant.)
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Figure 11. One reaborld walking path in downtown Salt Lake City, UT. The path is relatively
less sinuous due to low ambient pedestrian traffic. The layout of streets is also more regular than

the Yokohamaxample in Figure 12.

46



