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Abstract 

We introduce a novel scheme for automatically deriving synthetic walking (locomotion) and 

movement (steering and avoidance) behavior in simulation from simple trajectory samples. We 

use a combination of observed and recorded real-world movement trajectory samples in 

conjunction with synthetic, agent-generated, movement as inputs to a machine-learning scheme. 

This scheme produces movement behavior for non-sampled scenarios in simulation, for 

applications that can differ widely from the original collection settings. It does this by 

benchmarking a simulated pedestrian’s relative behavioral geography, local physical 

environment, and neighboring agent-pedestrians; using spatial analysis, spatial data access, 

classification, and clustering. The scheme then weights, trains, and tunes likely synthetic 

movement behavior, per-agent, per-location, per-time-step, and per-scenario. To prove its 

usefulness, we demonstrate the task of generating synthetic, non-sampled, agent-based 

pedestrian movement in simulated urban environments, where the scheme proves to be a useful 

substitute to traditional transition-driven methods for determining agent behavior. The potential 

broader applications of the scheme are numerous and include the design and delivery of location-

based services, evaluation of architectures for mobile communications technologies, what-if 

experimentation in agent-based models with hypotheses that are informed or translated from 

data, and the construction of algorithms for extracting and annotating space-time paths in 

massive data-sets. 
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―‘Sometimes you repeat yourself, man.’ ‘It’s in my nature’.‖ (Gibson 1984, p. 80) 

 

1 Introduction 

Walking and related locomotion is of significant interest for many domains, but many aspects of 

walking are difficult to experiment with in the real-world and can only be reliably explored 

through experimentation with computer models. To be useful, models need to be realistic. High-

fidelity representation of human walking behavior is commonly desired and model-builders often 

use agent-based models (ABMs) as a mechanism for representing individual agency in 

simulation, but in many cases they specify the models with coarse, abstract representations of 

movement (Hughes 2003). One of the reasons for this is the difficulty of collecting individual 

behavioral data in natural contexts, particularly for situations in which many walkers are 

considered. Behavioral inference, in particular, requires time-consuming observation and coding 

(Schwartz and Schwartz 1955). Moreover, there are often many emergency scenarios for which 

it is unrealistic to collect data on the ground. Recent developments in mobile positioning systems 

have made this easier, enabling automatic reporting of people’s positions from carried location-

aware devices (Torrens 2010b), but significant challenges remain in reliably associating 

movement paths with the reasons why people move the way that they do. In essence, few 

pipelines exist to map walking data to behavior. Developers of agent-based models consequently 

find it difficult to derive informed rules for agent walking behavior at the scale of individual 

agents and this leaves them little alternative but to employ abstract, proxy representations of 

movement (Torrens 2010a).  



3 

 

In this paper, we introduce a scheme to resolve this problem by infusing movement simulations 

with automatically-derived movement behaviors derived from machine-learning on trajectory 

samples. We will demonstrate that individual walking behavior in models can be machine-

learned from simple movement samples (snapshots of positioning and timing of locomotion). 

This provides an alternative to coarse models of movement. It also extends traditional agent-

based transition schemes, which hardcode agents’ movement rules into a model a priori. By 

contrast, our agents can develop their movement behavior dynamically, allowing greater model 

flexibility, because they learn movement anew, individually, for every agent, at every step, for 

every choice that they encounter in simulation. We also introduce a high-level behavior 

controller that allows model-users to specify agent-based transitions as Finite State Machines, 

adding further flexibility in repurposing trajectory data to new scenarios. To demonstrate the 

value of our approach, we will illustrate several application scenarios using different 

experimental data. 

The main advantages of our approach are as follows. Our scheme is data-agnostic because it can 

consume samples from any source that provides data as a movement trajectory. The model does 

not necessarily assume a specific underlying theory and it could even be applied to scenarios for 

which no theory yet exists, i.e., it could be used to develop theory from data. The scheme is 

flexible and can be applied to any environment or scenario in which movement is needed, 

compared to other approaches, which employ a solitary global model that all agents will access 

and that maps movement to a single data-point in a library, so that only models that match the 

specific scenarios recorded in the data library can be simulated.  
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2 Related Work 

Behavior-based ABMs represent the agency of walkers (usually pedestrians on streets) in 

simulation, using transition rules that describe how agents relate information that they encounter 

in simulation to their behavior (Benenson and Torrens 2004). Transition rules are often built 

using movement proxies such as random walks (Schweitzer 2003) or shortest-path planning 

(Nieuwenhuisen et al. 2007). In other cases, rules are sourced in actual behavioral mechanisms: 

occupancy behavior (Gipps and Marksjö 1985), steering (Reynolds 1999), vision (Turner and 

Penn 2002), space-time agendas (Paris et al. 2007), behavioral geography (Torrens 2007), 

collective behavior (Pelechano et al. 2008), or psychology (Allbeck et al. 2002).  

Data-driven models of movement primarily use motion samples as input to procedural (rather 

than behavioral) heuristics. Motion planners (Witkin and Popović 1995), for example, use 

kinematic solvers to map motion capture data to synthetic character–rigs in simulation. In other 

cases, trajectory data (from Geographic Positioning Systems (GPS), video cameras, or radio 

triangulation) are used to estimate plausible space-time paths of movement. This can involve 

classifying trajectories into types of movement (Dodge et al. 2009; Makris and Ellis 2002; 

Johansson et al. 2008), or the development of heuristics to estimate likely next trajectories from 

given paths. Krumm & Horvitz (2007) and Alvarez-Garcia et al. (2010) introduced methods to 

achieve the latter for cars, for example. Lerner et al. (2007) introduced a trajectory-prediction 

model for pedestrian movement. Their scheme enabled searching through a corpus of trajectories 

(extracted from video footage) and copied a likely trajectory from that library to animated agent-

characters in simulation, using similarity of real and simulated positioning relative to fixed 

infrastructure and velocity of ambient pedestrians as a mapping. Lee et al. (2007) introduced a 

similar scheme for group movement, using locally weighted learning to match agent movement 
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to video-derived trajectory samples. Zhang et al. (2009) presented a statistical learning-based 

steering model to predict agents’ velocity and direction from trajectory data, using a velocity-

space (a set of quadratic curves fitted from trajectory data) to determine the candidate trajectory. 

Nguyen et al. (2005) introduced a hierarchical hidden Markov model to learn movement from 

trajectory data by treating internal and external factors that simulated agents’ movement as 

hidden forcing factors for transition between movement types. Jankowski and colleagues have 

developed an innovative scheme for inferring movement events from trajectory data inherent in 

metadata associated with Online photograph repositories (Jankowski et al. 2010). 

The trajectory-sampling approach promises to help in overcoming the problems of building 

individually-rich movement ABMs that match real-world behavior, but challenges remain. Data 

is a first challenge: data provided by positioning systems are more precise than those collected 

through observation (whether the observation is made by humans or pattern extraction from 

video footage) because they are immune to occlusions (Mezouar and Chaumette 2002) and 

shadowing (Nabbe et al. 2006). But, observation can provide context for position, relating it to 

the physical environment and human terrain in which movement occurred (Willis et al. 2004). In 

our approach, we avoid having to trade-off the two, by (1) using human-observed trajectory data, 

where trained observers are able to resolve obfuscating factors; (2) using on-screen GIS for data 

collection to provide guiding information that assists observers in tracking movement with 

positional accuracy; (3) using spatial analysis in post-processing to index data positions to a 

physical environment; and (4) using simulation to generate plausible ambient human terrain.  

Scale presents a second challenge. Some of the trajectory-mining methods we discussed consider 

the macro-scale of movement (the trip); others consider the micro-scale (step-by-step). These 

scale differences also appear in behavioral representation. Some schemes treat high-level 
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behaviors (i.e., those involving significant conscious thought) and others focus on lower-level 

(subconscious, autonomic) behavior. Really, all of these factors control human movement. In our 

approach, we continue a recent tradition (Pelechano et al. 2008), adopting a mixed scheme. We 

pay particular care to represent movement at its appropriate scale by (1) treating low-level 

behavior (sub-movements within a path) at the micro-scale of movement (the person, step-by-

step) and (2) managing higher-level behavior as the conscious selection and assembly of lower-

level behavior at a macro-scale. 

The modeling approach or philosophy that is used can provide a third challenge, because it may 

lock a model-user into a particular way of framing her simulation, rather than flexibly supporting 

exploration. Many of the approaches we outlined are used in computer graphics (Thalmann and 

Musse 2007) and their design is ad hoc to those applications: built for movement in particular 

spaces, places, or contexts because they are required for repeatable (procedural) tasks. Realistic 

representation of behavior may not even be needed and trajectory-mining models are often 

applied as look-up tables, which cannot be generalized beyond the specific data-set used. We 

adopt a different approach by (1) learning (rather than simply mapping) behaviors from data, and 

(2) by codifying the produced knowledge into synthetic behaviors that can be ascribed to new 

places, spaces, and contexts. 

3 Methodology 

An overview of our approach is illustrated in Figure 1. We collected a range of trajectory data, 

which we stored in a Geographic Information System (GIS) and we used spatial analysis to 

calculate compound metrics that add value to data by describing multi-dimensions of walking. 

We developed a companion scheme for mining those data and building knowledge for individual 
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agents in ABMs by learning the movement behavior of real walkers (children indoors and 

outdoors in school and adult pedestrians in outdoor urban settings) through data access, 

classification, clustering, weighting, and matching.  

[Figure 1 goes here.] 

3.1 Building Trajectory Samples 

The first task is to build a library of trajectory samples that capture essential and distinct 

characteristics of walking movement. Realistically, any data-set that can be transformed into 

location trajectories could be used. We used data on real and synthetic (simulated) movement. 

We ran a six-month study in an American preschool in which trained human observers used GIS-

based tracking software that we developed to run on tablet PCs to digitize children’s (aged three 

to five) movement. The GIS provided a cartographic interface, upon which observers recorded 

the motion of walkers by sketching with a stylus (Figure 2); the system than interpreted the 

position and timing of those sketches, which was stored in a spatiotemporal database. Design of 

the interface was influenced by the observers’ feedback during a month-long trial run, and was 

developed to maximize ease-of-use (labeling of common movement sources/sinks; hierarchical 

controls that mapped to common tasks) and to guide observers’ hand-to-eye coordination when 

sketching, through representation of building floorplans and key infrastructure and grid-lines 

representing 1m
2
 on-the-ground. Observers were restricted from interacting with the children and 

data were collected with participant approval and subject to the oversight of the Institutional 

Review Board for the protection of human subjects. (Additional, social interaction tags were also 

ascribed to walker paths by observers working in tandem, who annotated socio-behavioral 

interactions between participants. We do not make use of those data in this paper, but we are 



8 

 

investigating how it might be used in further studies.) Data were collected during class schedule, 

each weekday, for six months. 

[Figure 2 goes here.] 

3.1.1 Building Compound Variables to Characterize Movement 

The next step is to add value to those data, by determining essential compound characteristics of 

movement. These were determined as follows. 

Self-moving speed: The instantaneous moving speed (  ) of a walker   at sampling point 

(location)   on a trajectory at time    was calculated as distance to the position at the previous 

time step      on a person’s trajectory, qualified by the duration of the move.  

                
 
 

            (i) 

Self-moving direction: was calculated using a local coordinate system (Figure 3). A walker’s 

moving direction   at sampling point   and time    was calculated as the offset angle from its 

current moving direction (which is the vector from its current position     to a next position 

      along the trajectory) to the local x-axis. By transforming to a local coordinate system (as 

opposed to a global coordinate system), agents can draw upon many more trajectory samples to 

train their behavior (Figure 4). Rather than a query returning one sample trajectory, the local 

system allowed for a bundle of samples to be returned, thereby better-informing the model. 

[Figures 3 and 4 go here.] 

Intended moving speed and direction are important characteristics because they can distinguish 

different movement behaviors among different individuals, even for conditions in which walkers 

might have the same instantaneous moving speed and direction. For tractability, we calculated 
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the movement intention of walkers’ speed (    ) and direction (    ) as the average of ten 

previous sampling points along a trajectory.  

           
    

 
          

    
 
             

  (2) 

        
  

    
 
          

    
 
             

  (3) 

Distance to target: We assumed that the end point (a destination or waypoint) of the trajectory of 

each walker was its moving target (the human observers in our study recorded data in this way), 

and we tagged this simply using Euclidean distance from a current sampling point to the moving 

target. (If the sink for a path was otherwise unknown, it could be implied by extended periods of 

motionless behavior.) 

Environmental variables: We accounted for walkers’ interaction with the built environment 

using a detection filter to represent vision. This filter was a sector, centered on each agent and 

oriented in its direction of travel, with user-configurable radius and a 120 degree angle, i.e., 

average healthy field-of-vision (Cutting et al. 2000). All static objects that the filter passed over 

as an agent moved were recorded in the local coordinate system we described. Trading off 

computational efficiency and detail, we divided the filter into twelve equal subsectors (Figure 5), 

calculating distance to environmental obstacles per subsector, producing a (always unique, in our 

tests) twelve-dimensional vector. This vector could be interpreted as a signature for comparing 

similar data in the trajectory library. Because the signatures are expressed in a local coordinate 

system, a query to the library to return matching archived trajectory samples will produce many 

results. For example, in the scenarios depicted in Figure 4, samples 1 and 2 provide different 

built environments, but both sampling points have equivalent local relationships to their 
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surroundings and the next actions along their trajectories are the same: moving towards free 

space without obstacles. This contrasts with global approaches [such as Lerner, et al (2007)], 

which only return a single sample per query because only the specific context of a particular 

environment is considered; outside of this context, that model may no longer be appropriate.  

Human neighborhood variables: Walkers generally avoid collisions with other people in their 

vision and in a small zone of awareness around (including behind) themselves (Cutting et al. 

1995). The latter zone usually produces rough awareness (because of aural and olfactory sense, 

memories of passing people, and cast shadows); the former is usually a reasonably accurate 

vector (Vishton and Cutting 1995). To represent this, we defined a circular zone for polling 

(human) neighborhood information, allowing its radius to be determined by the walker’s 

instantaneous moving speed, as follows. 

                 (4) 

Above,   denotes the detecting radius,   is a user-defined constant and    is a user-defined 

minimum observation range for the walker. The circle is user-configurable to allow for 

specification of different detecting radii. In dense conditions, for example, the area may shrink to 

track only immediate neighbors (Vishton and Cutting 1995). For efficiency, we partitioned the 

circle in eight equal sectors, in which distance from an agent to its nearest-neighboring agent and 

the neighbor’s speed and direction were recorded, producing an eight-dimensional vector.  

[Figure 5 goes here.] 
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3.2 Data Control 

The next step is to build a low-level action model that can use the compound vectors we just 

described to predict movement, and to construct a higher-level behavioral model to manage 

actions. 

3.2.1 Action Control 

The action controller delivers three autonomic behaviors (although others could be considered): 

(1) locomotion from an agent’s last position toward a destination, while (2) instructing agents on 

how to avoid collisions with the physical environment, and (3) telling agents how to avoid 

collisions with nearby human agents. In both collision-avoidance schemes, agents determine 

their next action per-encounter, i.e., without a global algorithm provided a priori.  

For example, in the simulations shown in Movie 1, at an initial stage (   ), each agent was 

assigned a start position, destination, and a behavior (an action, selected using a higher-level 

controller). Each agent used the locomotion model to predict its moving velocity and direction. 

At the same time, each agent scanned for and identified potential collisions with other agents 

and/or the physical environment. If a potential collision was detected, the agent shifted its action 

from using the locomotion model to using a collision avoidance model and thus adapted its 

moving velocity and direction to produce a collision-free path. Once the agent resolved the 

collision-avoidance maneuver, it reverted back to the locomotion model to control it motion 

through space and time toward the destination (Figure 1).  

Shifts between qualitatively distinct movement actions are handled by a higher-level control 

scheme that first considers an agent’s current moving condition Cq. The potential for transition to 
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another action Aq (where q is the query time step) is determined as follows. (We considered 

locomotion and collision avoidance, but others could be added.)  

                          (5) 

                                     (6) 

Aq is a two-dimensional vector: [next moving velocity, next moving direction] and Cq is a 

combination of multi-dimensional vectors. M is a five-dimensional vector describing an agent’s 

motion variables: [speed, direction, intended speed, intended direction, distance to target]. E is a 

12-dimensional vector representing an agent’s environmental variables: [distance to nearest 

obstacle in section 1 to 12 in a sector detection area]. N is a 16-dimensional vector denoting an 

agent’s human neighborhood information: [distance to nearest agent in section 1 to 8 in a 

circular circle detection area, moving direction of agent detected in section 1 to 8]. This 

produces a 17-dimension vector for locomotion and a 21-dimension vector for collision-

avoidance, a 38-vector parameter space in total. 

3.3 Learning from Data 

Once compound vectors have been generated for trajectory samples, the procedure of learning 

from the data can begin. First, data are organized for fast querying, then mapped to an agent’s 

query in the simulation, clustered as bundles of relevant data, trained, tuned, and delivered to the 

agent. 

Collected data are classified into behavioral categories (e.g., walking, running), producing N 

action-condition samples          , where          . These data either come already tagged 

by behavior or the category is determined from velocity and speed. The task of finding relevant 

samples per agent query involves searching a small set of k training samples,            , 
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where          , are those most similar to query point    (an agent’s instantaneous moving 

condition).  

Finding similar samples is difficult, especially when the dimensionality of query points is high. 

Tan et al. (2006) showed that the computation time for matching can be improved with 

approximations of nearest-neighbor samples, with relatively small error. We achieved this using 

the K-Nearest Neighbor (KNN) algorithm (Arya et al. 1998) to find k most similar samples from 

the trajectory library (we interfaced Mount and Arya’s (1997) ANN library in our code). KNN 

organizes samples into a K-Dimensional (k-d) tree in memory (Yao 1977), where k denotes the 

dimension of vector space for each sample. We stored different types of samples in different k-d 

trees. (For this study the k values of the k-d tree were 17 dimensions for locomotion samples and 

21 dimensions for collision avoidance samples.) Once organized, k-nearest neighbors may be 

sought from the library, based on the distance from a query point    to a sample   , where 

         . We used Euclidean distance between two vector spaces in a two-norm form: 

                  (7) 

Above,   and   are two vector spaces of sample point    and query point   .  

Each agent uses KNN to search for k-nearest, most similar (to its current status), samples and 

these samples are then used to calibrate either a locomotion or a collision avoidance model that 

will enable prediction of the agent’s future movement action   . Once the agent learns its 

moving action and moves to a new position, it re-queries nearest samples and calibrates a new 

model again to predict its next movement. To facilitate regression and to restrict the number of 

overall samples in the k-d tree, the value of k should be larger than the dimension of the vector 

space of condition variables   ; we allowed k to be user- and scenario-configurable.  
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3.3.1 Choosing Clusters as Bundles of Relevant Trajectory Samples  

Results of agent queries are non-Markovian, so k researched samples might contain distinct 

clusters representing completely different movement actions, e.g., when approaching the middle 

of a wall, people may turn right or left to avoid the wall with equivalent reaction (Figure 6). To 

resolve equivalencies in simulation, we apply the K-Means Clustering (KMC) algorithm 

(Kanungo et al. 2002) as selection logic. KMC allows us to find groups of objects that are 

similar or related to one another, but also different from (or unrelated to) objects in other groups. 

This is achieved by associating clusters with a centroid point, so that each point may be assigned 

to the cluster with the closest centroid. (The number of clusters K must be specified; we defined 

   .) In our work, we first calculated k searched samples using KNN and we then applied 

KMC to every set k to produce clusters. The reasonability of a given cluster (i) was assessed as a 

possibility    of selecting i, given   , the mean value of output values in cluster i;   , the mean 

value of output action of the previous query point; and   , the number of samples in cluster i, 

where N is the total number of samples k searched by KNN. 

                  
         (8) 

   has possible positive correlation with the deviation of previous queried samples and the 

number of samples in each one of     clusters, so we removed the cluster with smallest p 

value from consideration first. We applied a random selection for the remaining two p values if 

walkers were very close to each other, to represent stochasticity in movement behavior. We 

employed a configurable threshold to determine when to apply randomness; otherwise, the 

cluster with the highest p value was be chosen. 

[Figure 6 goes here.] 
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3.3.2 Locally Weighted Regression 

After we choose appropriate movement action samples from a trajectory database, we can use 

samples to calibrate simulated locomotion and collision avoidance models to real data. We 

performed calibration using locally weighted regression (LWR) (Atkeson et al. 1997), in 

conjunction with KNN and KMC. LWR enables local fitting. Unlike traditional regression, for 

which a single global model is estimated, LWR consumes training data only in a nearby region 

around the location of a query point when fitting a prediction surface, working on an assumption 

that closer samples have more impact on movement than those at-a-distance. We applied 

Euclidean distance between a query point and any nearby point, with a Gaussian kernel function, 

         to weight the distance d between a sample point   and a query point  . 

Alternative functions could be used. 

                 (9) 

For our applications, we wished to estimate an agent’s moving speed and direction per situation, 

so we needed to fit two different LWR models, as follows. 

                           (10) 

                              
  (11) 

Above,           and               are two outputs (speed and direction) of agent i.    and    are 

intercepts of the regression line.     is the     element of the k-dimensional explanatory 

variables, i.e., the moving condition variables defined in formulae (5) and (6).    and   
  are well-

behaved disturbance error terms with zero-mean and constant variance.    and    are the 

regression coefficients we needed to estimate from training data.  
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In matrix notation, the unknown regression coefficients vectors   and   of the two LWR models 

could be estimated as follows.

 

                     (12) 

                         (13) 

Above, X is a matrix in which each row is a moving condition vector   . W is a diagonal 

weighting matrix in which each diagonal element     is calculated using a Gaussian decay 

function. 

                     (14) 

Above, d represents the Euclidean distance between input sample points and a query point and h 

is a bandwidth that defines the scale or range over input samples. For computational efficiency, 

we applied the nearest neighbor bandwidth selection that h is equal to the distance from query 

point to the     nearest training sample point. This causes the input data volume to change 

according to the density of searched nearby samples. 

3.3.3 Tuning 

LWR may fail to return acceptable output if training samples are not well-selected (e.g., when 

the situations encountered by agents in simulation are significantly different from any real-world 

samples or they are completely novel, with no analog in the data), so an assessment of fit is 

needed. However, it is costly to estimate goodness-of-fit of our LWR models because they run in 

real-time, i.e., LWR is applied at every simulation step of every agent. Each LWR procedure 

uses KNN and KMC and the computational time required by LWR depends heavily on the size 

of all sample spaces and the length of independent vectors. For example, if we simulated the 
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movement of ten agents with thirty frames per second resolution, LWR would need to be 

executed                  times per second. 

As an alternative to estimating prediction error, we defined a simple rule to tune excessive or 

unacceptable output of the models. First, in each LWR procedure, after using KMC to identify 

the most reasonable clusters, we calculated statistical indicators from the samples in the selected 

cluster: minimum, average, and maximum value of moving speed and moving direction. Second, 

we defined a criterion to determine if the predicted outputs were acceptable or not by checking if 

the output moving speed and direction fell in the range of minimum and maximum moving speed 

and direction, which we calculated in the first step. When the output values exceeded the 

acceptable value range, we tuned the outputs by using the average moving speed and direction as 

a substitute for the unacceptable outputs. 

3.4 Assembling Behaviors as Finite State Machines 

Atop the scheme we have described, we designed a high-level Finite State Machine (FSM) 

controller, as a scenario-based configuration model. In the FSM, each learning-based low-level 

action model is treated as a single state and the FSM determines transitions between states, as a 

higher-level controller. This allowed us to endow simulation agents with the ability to mix-and-

match different lower-level behaviors, to account for different behavioral faculties as different 

durations and transition potentials of the low-level action model.  

Take a simple scenario as an example: if users wished to explore or reproduce an evacuation 

scenario, they could first build three low-level action models, which could be learnt from 

collected trajectories of realistic walkers. Suppose that three learning-based models were 

provided—walk, run, and stand—and all agents had the same movement behavior. Then, users 
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could define a FSM for all agents (Figure 7). This FSM might dictate that each agent will start 

with a running action in a panic situation, and end with a standing action when they reach a safe 

destination for assembly. Agents’ activity state transition—from running to walking—could take 

place when they successfully escape. Users could also define a state transition from running to 

standing when agents get stuck in a crowd, or assign symbolic waypoints to agents (a start 

position, an exit waypoint, and a safe assembly position, for example). Other control models 

could be implemented per application, event, demographic, place, etc. 

[Figure 7 goes here.] 

3.5 Analyzing Simulated Movement 

We calculated metrics of movement to compare and contrast real-world and simulated paths and 

to assess differences between simulation scenarios. We calculated the following characteristics 

of movement: relative sinuosity as an indicator of perturbation [pedestrians prefer to move in 

relatively straight lines (Hillier and Hanson 1984)], scaling as an indicator of the spatial 

hierarchy of action-reaction, and trajectory preservation as an indicator of the model’s ability to 

generate realistic movement at micro-scales. 

Fractal dimension measures of the ability of a path to fill space. This can be interpreted in two 

important ways. First, it indicates the level of behavior: agents that move predominantly by low-

level behavior (automotive locomotion) may generate paths with     , i.e., close to a straight 

line. Walkers that use collision avoidance may produce paths that fill more space, i.e.,      

 . Second, differences in the value can be used to measure relative sinuosity between agents, 

environments, models, sample-sets, scenarios, etc. We estimated fractal dimension   using 

traditional divider methods (Mandelbrot 1977). Mean fractal dimension (  ) was used to correct 
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for known overestimation errors in truncation when using the divider method at large scales 

(Nams 2006).  

Mean cosine of turning angle (        ) indexes relative straightness over an entire path (         

  is straight) by relating total path length (Net) with step lengths (step) for different-sized 

dividers (Nams 2006). 

       

    
   
    

 
 

 

              
 (15) 

Correlation between successive turn angles (      ) measures relative directional preservation 

on a step-by-step basis (Nams 1996).  

Approximate Entropy (ApEn) indicates the likelihood of similar patterns to manifest in a time 

series (Pincus 1991). ApEn will be relatively small for data that contain many repetitive patterns 

(data that are highly structural) and high for data with a less predictable process (data with 

complex or random structure). Given data    with   continuous observations, we defined a 

sequence of   observations at location  ,        , as a pattern      . If the difference between 

two patterns—      and      —is less than a predefined criterion  , we may regard these 

patterns as similar.  

 
                 

     

       
  (16) 

Above,   specifies the pattern length,   defines the criterion of similarity between patterns, and 

      is the prevalence of repetitive patterns of length   in   , which can be calculated as 

follows. 
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          (17) 

Above,        is the number of patterns in    that are similar to      . 

4 Experiments 

We developed several standalone, machine-learned, simulations to prove the usefulness of our 

model using different scenarios and data. (Parameterization of the scenarios is detailed in Table 

1.) We also compared machine-learned movement to real-world movement, using the preschool 

data we already discussed, as well as GPS trajectories that we obtained for adult pedestrians in 

downtown Salt Lake City, USA and Yokohama, Japan. 

[Table 1 goes here.] 

4.1 Preschool Children’s Movement Behavior 

In this experiment, we trained the model on the preschool data described in section 3.1. 89,518 

samples were used for walking or running and 70,527 for cycling (Figure 8). Arbitrary source 

and sink locations in a simulated replication of the preschool environment were provided and the 

model had to learn how to move free from collisions between these locations, using only the 

training data. The resulting simulation is shown in Figure 9 and Movie 1. Visually, machine-

learned child-walking appeared appropriately child-like with some unneeded sinuosity, which is 

understandable, given that the model is sourced from data of mobile toddlers. In the cycling 

scenario, machine-learning child-bikers managed to move along a track, successfully turning 

corners while staying within track boundaries with visually-plausible movement for small 

tricycles with a top speed of ~1 mile per hour. 
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[Figures 8 and 9 go here.] 

Values of fractal mean (  ) for real-world and machine-learned kids’ walking and tricycling were 

a good match:   ~1.02 for observed tricycling and     1.01 for machine-learned tricycling;     

1.02 to 1.16 for observed walking and     1.02 for machine-learned walking (Table 2). These 

values imply that movement occupied a relatively small amount of space and was therefore low 

in sinuosity and close to straight, considered over the entire path. However, machine-learned 

kids’ movement was straighter than that of real-world observations at local scales (          0.98 

for machine-learned tricycling, compared to 0.56 to 0.79 for observed tricycling;           0.91 

for machine-learned walking, compared to 0.64 to 0.82 for observed walking). A greater degree 

of directional preservation was reported for machine-learned movement, step-by-step (       

     for machine-learned biking and       for machine-learned walking, compared to       to 

      for observed biking and       to       for observed walking). Again, this indicates that 

machine-learned movement was locally straighter than in the real world. 

[Table 2 goes here.] 

Considering that toddlers’ playing is often target-less, random, and disordered, the ApEn 

measurements of children’s movement in preschool should be high, i.e., movement should be 

unpredictable. This was evident in our measurements (Table 3): the average ApEn values of real 

children’s walking velocity, acceleration, and turning angles were about 0.61, 0.62 and 0.73, 

respectively, close in value to ApEn for machine-learned walking, which were 0.65, 0.82, and 

0.71, respectively. By these measures, our machine-learned walking model produced plausibly 

complex behavior. The average ApEn values for machine-learned cycling velocity, acceleration, 

and turning angles were 0.97, 1.13, and 1.03, respectively, higher than the average ApEn values 

for real children’s cycling, which were 0.52, 0.56, and 0.51, respectively (Table 4). This implies 
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that our machine-learned model over-estimated the amount of complexity required to produce 

movement by tricycling.  

[Table 4 goes here.] 

All of these values were considerably higher than the same ApEn measurements of real 

pedestrian walking in Salt Lake City (0.18 for velocity, 0.14 for acceleration, and 0.18 for 

turning). Adult pedestrians can feasibly be considered as walking with greater skill and purpose 

in cities than toddlers in a preschool might do. Because adults have the ability to control their 

moving speed and turning angles to move smoothly and comfortably towards their target, they 

will usually change their moving velocity, acceleration, and turning angles progressively, which 

will persist more continuously across a trip. In other words, they are more predictable than 

toddlers. 

4.2 Meta-Simulating Movement While Playing Capture-the-Flag 

This simulation tasked modeled agents with the goal of capturing a stationary flag in a simulated 

space, using machine-learned behavior to move as quickly as possible while avoiding collisions 

with fixed objects. In this case, we used machine-learning as a meta-ABM. First, we simulated 

movement among agents in a crowded environment using Reynolds’s (1999) steering model 

(Movie 1). Second, we used 11,000 trajectory samples from this simulation to learn new 

movement between arbitrary (non-sampled) origins and destinations in a second agent-based 

simulation that relied only on our learning scheme (i.e., the second model did not have access to 

Reynolds’s algorithms at all). Because the focus was on avoiding fixed obstacles only, one agent 

was introduced to the simulation at a time. The machine-learning routine did produce visually 

smooth, collision-free movement for these scenarios (Movie 1). We also tasked the machine-
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learning model with producing movement that was free from collisions with fixed 

(infrastructure) obstacles and with mobile (other agent) obstacles (Movie 1).  

Values of fractal metrics were close to those for the original simulated Reynolds steering paths, 

as were metrics for ApEn velocity, acceleration, and direction. Results for the machine-learned 

meta-ABM reflected the heuristic of the Reynolds algorithms, which was to move agents to 

destinations by smoothly avoiding collisions. Agents’ velocity change was implemented by 

applying a braking or accelerating function, which yielded a fully ―predictable‖ pattern. This was 

apparent in our ApEn results: movement by machine-learned capture-the-flag behavior was a 

plausible match to the original steering data produced by the Reynolds simulation (Table 4). 

4.3 Quotidian Walking along Downtown Streetscapes 

In this experiment, we introduced two—qualitatively different—sets of training data, generated 

using Reynolds (1999) steering algorithms: (1) a game of capture-the-flag in an obstacle-littered 

environment (fixed obstacle avoidance) and (2) agent-agent avoidance in free space (mobile 

collision avoidance) (Movie 1). These data were used to feed a machine-learning model of 

everyday walking behavior along a simulated streetscape (our scheme allows simulated 

environments to be specified using ASCII, bitmap, or shapefiles; agents can interpret boundaries 

in any of these formats).  

The idea, in this scenario, was to test the ability of the FSM controller to switch between 

qualitatively-different movement behaviors (walking, stopping, steering to avoid collisions, 

avoiding fixed and mobile obstacles). Agents did move in a visually realistic way to their 

destinations, employing sequences of walking, steering, and collision avoidance to get out of the 

way of fixed and mobile obstacles (Figure 10). 
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[Figure 10 goes here.] 

We compared the resulting machine-learned simulation to movement paths for real-world (adult) 

urban pedestrians (Figures 11 and 12). Fractal values for the American (    1.04) and Japanese 

(    1.16 to 1.21) samples differed, reflecting the relatively denser pedestrian streetscapes of 

Yokohama, in which pedestrians must execute a greater number of collision-avoidance 

maneuvers to avoid bumping into other people. Differences also presented in values for 

directional preservation: the Japanese examples were significantly less straight over an entire trip 

(          0.36 to 0.46) than the American example (          0.92).        was strongly negative 

for the urban samples, suggesting a lack of directional preservation. The machine-learned urban 

pedestrian model generated measures of fractal mean (    1.02) and directional preservation 

(          0.99) that corresponded well with the American movement case, but the fractal measure 

was significantly less sinuous and the directional preservation was straighter than the Japanese 

samples. This could, perhaps, be explained by the lower number of potential collisions in the 

ambient pedestrian traffic in that simulation, compared to the reality of downtown Japanese 

streetscapes. For the same reason, we might reasonably expect pedestrian movement in the 

Yokohama case to be more complex and unpredictable than the American case. Indeed, we 

measured relatively high ApEn values for Yokohama moving velocity and acceleration: 0.94 in 

velocity and 0.59 in acceleration (see Table 3). The ApEn measurement of direction was only 

0.16, which could be attributed to the tendency for dense crowds to self-organize into 

spontaneous lanes of unidirectional movement (Helbing et al. 2001). Machine-learned urban 

pedestrian movement produced ApEn velocity and acceleration values that fell roughly halfway 

between those for real-world walking in Salt Lake City and Yokohama (Table 4), although ApEn 

direction values were a very close match for machine-learned and real-world urban movement.  
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[Figures 11 and 12 go here.] 

5 Conclusions 

In this paper, we introduced a novel method for machine-learning human movement behavior, 

on-the-fly, from large databases of trajectory samples. It is important to note that this is distinct 

from (1) simply reproducing movement patterns in simulation and from (2) using a model a 

priori. Using a series of experiments to simulate real-world scenarios, we have shown that the 

scheme can be used to automatically generate realistic-looking and quantitatively plausible 

movement behavior for non-sampled situations and that different types of trajectory data can be 

inter-mingled in the scheme, as needed. The approach that we introduced is novel relative to 

other machine-learning schemes for movement, because it is data-agnostic and because it can be 

applied to different environments without the need to be reconfigured anew. This novelty is 

achieved by modeling, weighting, training, and applying space-time specific models per agent, 

per location, and per time-step in simulation, which contrasts with standard approaches that use 

global models that may work only on particular data-sets and for particular scenarios.  

There are other potential applications of the work. We focused on human movement, but the 

scheme could be applied to animal or insect movement [indeed, data for these contexts are often 

more readily available (Nathan et al. 2008)]. Our model could be adapted to work on real-time 

data-feeds, such as those generated from location-based services. The FSM controller that we 

introduced, while straightforward, could be expanded to encompass more complicated (agent-

based, or other schemes) models, or to dock to existing models that need not necessarily be 

movement-based. Indeed, our scheme could be used to spatially enable non-mobile models. The 

scheme could also be used for what-if experimentation in agent-based models with hypotheses 
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that are informed or translated from data and the construction of algorithms for extracting and 

annotating space-time paths in massive data-sets. This potentially allies our scheme with 

developing functionality in computational social science (Lazer et al. 2009; Torrens 2010b).  

The approach, as presented, does have some deficiencies and room for improvement remains. 

First, our model depends heavily on trajectory samples. Because learning is data-driven, action 

models can only be reliably learned from representative samples. This means, for example, that 

ordinary data (e.g., commuting) could not be used to train a model for extraordinary movement 

(e.g., panicked stampedes); a new model would need to be developed for these behaviors. The 

precision of the machine-learning is also influenced by collected trajectory data and different 

data sources (observation, GPS, video sampling) yield different advantages and disadvantages; 

no one technique is both automatic and precise. Intuitively, combing several different data 

sources would provide a solution to this problem. Second, we have abstracted from discussion of 

the computational cost of our scheme. Memory is not a problem: we employed a k-d tree to 

efficiently index huge sample datasets. However, requirements for KNN querying and 

regression-based learning will increase with the amount of training data infused to the algorithms 

at run time. 

Development of this scheme is ongoing and in the future, we plan to extend the approach to other 

movement behaviors, covering different demographics of agents and moving conditions and to 

accommodate near-real-time data feeds. We also plan to introduce higher-level movements, 

beyond local choreography to include trip-planning, path-planning, and way-finding. We are also 

investigating methods for accelerating the computation of the model using coarse-grained multi-

scale computation (Kevrekidis et al. 2003).  
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Movies 

 

―TGIS-movie.wmv‖ is attached with the submission of the manuscript; it shows the simulations 

that the machine-learning scheme is capable of generating. 



34 

 

Figures 

 

Figure 1. The programmatic flow between different components of the low-level action model. 
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Figure 2. Trajectory samples of children’s movement were collected by trained human observers, 

who sketched their movement in real-time, using a GIS-based GUI on a tablet PC. 
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Figure 3: Agent (in-simulation) positioning relative to the local coordinate system. In this local 

coordinate system, the x-axis denotes the vector of moving direction from a pedestrian’s current 

position to its target and the y-axis represents its direction as a vector from an agent’s current 

location to its destination, rotated by ninety degrees. 

  



37 

 

 

Figure 4: The environmental information of a sample point. Two candidate trajectory samples 

are shown at the bottom of the illustration; both may be selected by the model; although their 

global geographies differ, the local geographies around the agent are equivalent. Moreover, the 

agent’s trajectories are equivalent (moving toward free space). Both samples can therefore be 

returned to a querying agent as training data for its movement model. (By comparison, a global 

model would only be able to return one sample, marrying an agent to that particular scenario.) 
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Figure 5: Neighboring humans are polled using a circular awareness zone. 
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Figure 6: Choosing clusters from researched samples. Many potential paths can be taken to avoid 

a wall. Our scheme can sweep a full sample-space of trajectory samples (from real-world choices 

to avoid the wall) to calculate the most likely future movement. 
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Figure 7: A sample of Finite State Machine as a high-level control model. 
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Figure 8 (a) 
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Figure 8 (b) 
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Figure 8 (c) 

Figure 8. Sample trajectories for young children in a preschool. (a) Walking; (b) running; (c) 

riding a tricycle. (Scale bars are inappropriate for 3D graphics; the area represented by the 

graphics corresponds to 800 square feet on the ground.) 
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Figure 9. The children’s movement model in run-time. An agent (pink) tries to move between an 

arbitrary origin and destination (the smaller red circle on the left-hand-side of the illustration, 

while avoiding collisions with furniture and walls (green) in a simulated classroom. The agent 

uses a detection filter (white) to poll trajectory samples. Movement is driven solely by our 

learning scheme and trajectory samples. The run-time environment is rendered using Craig 

Reynolds’s OpenGL libraries (Reynolds 1999) (just the graphic libraries are used, not Reynold’s 

steering behaviors). 
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Figure 10. Two space-time paths from the urban pedestrian simulation are illustrated. The space-

time paths of pedestrians A and B do not cross, i.e., they avoid colliding. Both agents also avoid 

built infrastructure in their environment while moving to their destination locations. In the inset, 

pedestrian B applied steering to avoid bumping into pedestrian A, as evident in the intersecting 

area of their 3D space-time paths (two dimensions of space and one of time). (The space is 

simulated as so a scale bar is somewhat irrelevant.)  
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Figure 11. One real-world walking path in downtown Salt Lake City, UT. The path is relatively 

less sinuous due to low ambient pedestrian traffic. The layout of streets is also more regular than 

the Yokohama example in Figure 12. 
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Figure 12. Two real-world walking paths in the Chinatown district of Yokohama. The paths are 

relatively sinuous because of the dense traffic of pedestrians on the streets. The layout of streets 

is also more irregular than the Salt Lake City example in Figure 11. 
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Tables 

 

Table 1: Experimental data. The weight values of different features are empirically tuned to yield realistic behavior. 

Learning Models 
Number of 

samples {M,E,N} 

Parameters of detection 

area 

Weight of motion 

variables 

Weight of 

environment 

variables 

Weight of neighborhood 

variables 

Children’s movement 

(walking) 
80,000   =0.5 meters, β=0 1 100 Not applicable 

Children’s movement 

(ride bike) 
70,000   =1 meters, β=0 1 1,000 Not applicable 

Reynolds’ capture-

the-flag 
57,000   =10 meters, β=0.1 1 1,000 Not applicable 

Reynolds’ collision 

avoidance 
11,000   =8 meters, β=0.1 1 Not applicable 1,000 

Urban pedestrians Combine Reynolds’ capture-the-flag and collision avoidance parameters 
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Table 2. Movement metrics for sampled and machine-learned paths. 

Scenario      

Scale 

(min) 

Scale 

(max) 

Length 

(units) Moves           SD        SE 

P  

value 

Sampled real–world movement 

Kids biking (path 1) 1.0604 1.0274 0.07 11.4 30.845 386 0.559 0.489 –0.3923 0.051 0 

Kids biking (path 3) 1.0394 1.0169 0.07 20.7 49.229 601 0.77 0.367 –0.6286 0.041 0 

Kids biking (path 6) 1.0438 1.0255 0.07 34.8 118.17 1476 0.735 0.398 –0.5199 0.026 0 

Kids biking (path 9) 1.0422 1.0178 0.07 24.1 57.35 694 0.787 0.335 –0.5781 0.038 0 

Kids biking (path 10) 1.0459 1.0230 0.07 19.8 49.97 591 0.645 0.445 –0.5540 0.041 0 

Kids walking (path 2) 1.2024 1.1617 0.08 23.6 144.59 1815 0.636 0.445 –0.4672 0.023 0 

Kids walking (path 4) 1.1070 1.0685 0.07 21.6 119.25 1477 0.639 0.425 –0.4517 0.026 0 

Kids walking (path 5) 1.0645 1.0366 0.07 24.3 65.91 764 0.823 0.325 –0.5177 0.036 0 

Kids walking (path 7) 1.0415 1.0194 0.07 22.7 54.11 612 0.767 0.349 –0.6359 0.041 0 

Kids walking (path 8) 1.0499 1.0237 0.07 22.5 63.21 780 0.752 0.381 –0.4662 0.036 0 

(Reynolds steering) 1.0092 1.003 0 31.8 63.7 525 1 0 0.6413 0.044 0 

Urban pedestrian (American downtown) 1.0356 1.0295 0.01 951.2 2802.1 35062 0.923 0.313 –0.4769 0.005 0 

Urban pedestrian (Japanese downtown 1) 1.2084 1.184 0.91 394 6650 6116 0.361 0.684 –0.1536 0.013 0 

Urban pedestrian (Japanese downtown 2) 1.1565 1.1037 0.91 287.1 1215.6 1047 0.463 0.599 –0.2499 0.031 0 

Machine-learned movement 

Machine-learned walking 1.0331 1.0164 0.01 8.01 18.69 167 0.905 0.23 –0.0167 0.078 0.831 

Machine-learned tricycling 1.0036 1.0095 0.02 22.31 71.83 269 0.981 0.043 0.0112 0.061 0.855 

Machine-learned capture the flag 1.0458 1.0056 0.01 18.75 42.76 286 1 0 3.6671 0.059 0 

Machine-learned urban pedestrian 1.0527 1.023 1 100 81.84 227 0.993 0.075 0.2934 0.067 0 

SD: standard deviation of the metric to the left; SE: standard error of the metric to the left. Reynolds steering data is simulated (not learned). 
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Table 3. Entropy metrics for real-world paths. 

Scenario → 
Kids 

bike 1 

Kids 

bike 3 

Kids 

bike 6 

Kids 

bike 9 

Kids 

bike 10 

Kids 

walk 2 

Kids 

walk 4 

Kids 

walk 5 

Kids 

walk 7 

Kids 

walk 8 

Salt 

Lake 

City 

Yokohama 

1 

Yokohama 

2 

Entropy metric ↓ 

AppEn velocity 0.47 0.38 0.82 0.37 0.63 0.98 0.9 0.5 0.27 0.47 0.18 0.87 1.02 

AppEn acceleration 0.6 0.34 0.89 0.37 0.62 1.05 0.85 0.56 0.24 0.42 0.14 0.58 0.6 

AppEn direction 0.44 0.3 0.9 0.31 0.6 1.12 0.9 0.72 0.41 0.53 0.18 0.17 0.16 

Mean velocity 2.77 6.21 4.67 7 4.43 3.58 4.32 5.89 7.4 4.93 0.78 1.09 1.16 

Velocity standard 

deviation 
1.92 2.58 2.86 2.3 3.37 2.43 2.5 3.39 3.62 2.18 1.28 1.21 1.07 

Velocity skew 1.14 0.54 1.05 0.68 1.2 1.49 1.13 0.63 0.44 0.36 17.4 3.29 1.03 

Mean acceleration 0.15 –0.66 –0.66 0.38 –0.67 –0.1 –0.24 –1.35 –0.7 –0.09 0 0 0 

Acceleration 

standard deviation 
14.43 21.31 19.63 22 24.3 15.85 17.47 28.9 27.29 19.68 2.08 2.3 2.19 

Acceleration skew –0.23 0.08 –0.31 –0.4 –0.89 0.15 –0.33 0.2 –0.18 –0.14 –2.5 0.83 –0.06 

Mean direction –0.01 –0.01 –0.1 –0.1 0 0 0.03 –0.04 –0.01 –0.01 0 –0.02 –0.01 

Direction standard 

deviation 
0.35 0.18 0.29 0.16 0.25 0.31 0.28 0.33 0.21 0.23 0.24 0.52 0.5 

Direction skew 0.29 –0.2 0.11 –0.44 0.52 2.54 2.18 –3.8 –0.47 0.6 0.42 –1.17 –0.71 

Trajectory length 26.14 45.06 106.42 52.8 44.16 125.9 104.31 61.23 49.88 57.08 2798 6650 1215 

Trajectory duration 9.44 7.25 22.78 7.55 9.97 35.31 24.14 10.34 6.7 11.56 3575 6122 1047 

Trajectory length is in meters; trajectory duration is in seconds. 
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Table 4. Entropy metrics for machine-learned paths. 

Scenario → ML walking ML cycling ML capture the flag ML urban pedestrian Reynolds steering 

Entropy metric ↓ 

AppEn velocity 0.65 0.97 0 0.57 0.03 

AppEn acceleration 0.82 1.13 0 0.52 0.25 

AppEn direction 0.71 1.03 0.03 0.16 0 

Mean velocity 2.24 2.7 2.4 6.75 3 

Velocity standard deviation 1.3 1.26 0.9 1.5 0 

Velocity skew 1.62 0.83 –2.3 –0.02 –13.26 

Mean acceleration 0.34 0.11 0.08 0.29 0 

Acceleration standard deviation 24.9 18 1.76 24 0.06 

Acceleration skew 1.21 –0.05 17.17 0.08 –9.14 

Mean direction –0.04 0 7.6 0.01 –0.01 

Direction standard deviation 0.5 0.23 0.01 0.03 0.01 

Direction skew –2 0.17 –0.22 2.07 –1.4 

Trajectory length 18.69 72.34 63.7 76.5 42.76 

Trajectory duration 8.35 26.82 26.22 11.33 14.25 

ML: machine-learned. Reynolds steering is simulated (not learned). 
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