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Abstract

Agent-based models (ABMs) are used in the spatial sciences as building-blocks for computer simu-
lation. ABMs have a range of advantageous attributes, not least of which is their flexibility in
representing dynamic and highly adaptive physical or human phenomena. ABMs facilitate the
exploration of ideas about the myriad of ways that geographical systems develop, behave, interact
and evolve, often supporting experimentation with geographical systems in ways that are simply
not possible in the real world. Indeed, in many cases, ABMs are developed from the bottom up,
pedagogically, as a tool in building theory. Geographers’ work with ABMs has helped to
strengthen existing ties with related disciplines such as computer science and informatics, ecology,
sustainability science, economics, anthropology, political science and the earth sciences. Primarily
because of the value placed on spatial science and behavioral geography in agent-based modeling,
work of this kind is helping to infuse geographical perspectives and ‘spatial thinking’ into these
fields. This article reviews the development of agent-based modeling in the spatial sciences, its
current uses and applications in physical and human geography and potential future trends in its
research and development.

1 Introduction

Put briefly, agent-based models (ABMs) are tools for modeling by intelligent and proactive
information processing. Agents are used as the computational ‘bricks’ in constructing com-
puter simulation environments for experimentation and exploration of ideas. Although
they are a fitting progression of a long-standing research agenda in behavioral geography,
quantitative geography and Geographic Information Science (GIScience), ABMs represent
a relatively new methodology in the spatial sciences, but use of ABMs in the spatial sciences
is popular and influential and, importantly, simulation with spatial ABMs is catalysing the
diffusion of ‘spatial thinking’ through and beyond the spatial sciences in significant ways.

The spatial sciences are an umbrella for geographic research, with a primary focus on
representation of space in its diverse forms. Spatial science is usually associated with meth-
odology to measure, analyse and represent spatial attributes of phenomena, often across a
variety of substantive interests. ‘Modeling’ is a core component of the spatial sciences;
models are used by geographers to develop and test theories, ideas and hypotheses and to
convey those ideas and concepts in teaching and education. Spatial simulation (the proce-
dure of ‘using’ models, for inductive or deductive reasoning, for example) is central to
the analysis and interpretation of geographic data for experimentation and for extrapola-
tion (‘forecasting’) about future what-if scenarios or to interpolate gaps or unknowns in
our understanding of systems. Models can even be used to ‘hindcast’ about the origins of
geographical phenomena when their evolution over space and time is less than certain. In
each of these instances, the model serves as a vehicle or apparatus that allows for theory
to be allied with data in some sort of analytical framework.
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Originally, the analytical medium for spatial models was mathematics: the bid-rent
model for factor-substitution in residential location and urban commuting (Alonso 1960),
the gravity model of spatial interaction (Fotheringham and O’Kelly 1989) and early
models of innovation diffusion (Hägerstrand 1967) are all classic examples that are now
part of the core corpus of spatial science. Agent-based modeling represents something
of a departure from traditional methods, which have often employed computers (for
calculation, visualization, data storage etc.), but have not generally used computation
(algorithmic functions, knowledge discovery schemes, data access structures etc.). This has
changed, particularly in the last 20 years, as spatial modeling began to evolve in tandem
with GIScience, bringing spatial modeling into alignment with advanced simulation
techniques in computer science (Torrens 2009).

This article charts the development and application of agent-based modeling in the
spatial sciences and its use in geographical inquiry outside the spatial sciences. The history
of agent-based modeling in the spatial sciences is outlined in section 2 and the formula-
tion of ABMs in simulation is discussed in section 3. Applications of those schemes to
a variety of substantive phenomena are discussed in section 4 (and further details are
provided in Appendices 1 and 2). The article concludes in sections 5 and 6 with a discus-
sion of current trends in advancing spatial agent-based modeling and likely futures for
the field.

2 A Brief Intellectual History of ABMs

Agent-based models are, at heart, a medium for information processing and exchange.
At their cores, ABMs are automata (computable media for connecting information and
processing) and they therefore share their origins with those of all digital computers, in
Turing’s (1936) work on the computability of mathematics and von Neumann’s (1951)
and Ulam’s (1969) early designs for digital computers. ABMs usually manifest as an infor-
mation system and in this way they are connected to information theory (Shannon 1948).
Moreover, many ABMs ascribe a level of intelligence to their agents by endowing them
with the ability to reason (often proactively) about the information that they process in a
formal manner and ABMs may also be considered as drawing on ideas from cybernetics
(Weiner 1948), and intelligent machines (Turing 1950).

Agent-like models were first introduced to the spatial sciences in the 1960s and 1970s
as cellular automata (CA), which were used to model urban growth and land-use as
exchanges of information between cellular representations of land units and information
processing rules that mimicked general principles of urbanization and development (Cha-
pin and Weiss 1962; Nakajima 1977; Tobler 1970). Fully-fledged agent-based modeling,
in which similar capabilities were introduced without the constraint of cellular spatial data
structures (Figure 1), began to appear in the spatial sciences more stealthily and at a much
later time. The earliest geographical ABMs were developed by Itami et al. (1988) in the
late-1980s to model recreation and wayfinding behavior along trails. ABMs also trickled
into spatial science through modeling work being done in the social sciences (Epstein and
Axtell 1996), particularly from model development in game theory (Schelling 1978) and
‘social physics’ (Helbing and Molnár 1995). At the same time, ABMs were being devel-
oped in ecology (De Angelis and Gross 1992), biology (Ermentrout and Edelstein-Keshet
1993), and entomology (Bonabeau et al. 1999). The development of spatial ABMs in this
context was closely related to a growing and interdisciplinary focus on the role of space
and spatial behavior in conceptualizing complex adaptive systems [see Manson (2001),
Batty (2005), and Benenson and Torrens (2004) for a more complete history].
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Fig. 1. (a) Equivalent spatial footprints and neighbor relationships are shown for cellular automata and an agent in
an agent-based model. Cellular automata are bounded discretely by a cellular geography and neighborhood rela-
tionships are limited to adjacency between cells. By contrast, in agent-based models, agents may form neighbor-
hood relationships with any entity in their environment. (b) Cellular automata neighborhoods are often regular and
symmetrical in geometry and fixed in space and time. (c) Agent-based models may employ flexible neighborhood
relationships, including relative spaces such as social networks, in addition to using cellular spaces that may denote
additional state information.
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3 How ABMs (and their variants) work

Agent-based modeld (ABMs) are ‘models’. They are most often used as in silico (using
simulated, computational environments or substrates) abstractions of something from the
real world or something that exists in conceptual form. ABMs act as a surrogate represen-
tation for the purposes of experimentation or scenario-building. Agents can represent a
variety of spatial entities and phenomena: car drivers in a traffic system (Torrens 2005),
cancer cells in the body (Deutsch and Dormann 2004), or a spatial task that forms part of
a cognitive action (Frank et al. 2001b), for example. Moreover, ABMs are ‘agent-based’.
They are a particular class of model used as proxies for agency or as vehicles to study
agency. Agency is the source of great variety in the design and application of ABMs,
largely because this property broadens the scope of agent-based modeling from comput-
ing to any discipline in which agency is important or even relevant. The list of related
disciplines is long and includes geography (Benenson and Torrens 2004), sociology (Macy
and Willer 2002), ecology (Balzter et al. 1998), anthropology (Kohler and Gumerman
2001), economics (Tesfatsion 1997), physics (Schweitzer 2003), computer graphics
(Reynolds 1999), agriculture (Berger 2001), and psychology (Griffin 2005) (Appendix 1).
A variety of development tools also exist for constructing ABMs (Appendix 2).

3.1 TYPES OF AGENT-BASED MODELS

Several varieties of ABM are used in spatial modeling. As mentioned already, ‘cellular
automata’ (Batty 1997) are related to agent-automata and are distinguished by bounding
agents’ processing within a discrete cellular boundary that is connected to other like auto-
mata using neighborhoods of interaction (Figure 1). ‘Individual-based models’ (Grimm
1999) are usually designed to represent the behavior of a single agent. This might include
an institution, a mind or even an organism and computation is usually focused on the
agent’s internal decision-making processes in these cases. ‘Multi-agent models’ are gener-
ally built with many individual agents, each of which may play a different role or assume
a set of distinct tasks in a model of collective behavior. Such models generally focus on
the interactions between individuals or units. ‘Multi-agent systems’ adopt a synoptic view,
often from the bottom-up, to consider individual agency in the context of a larger or
collaborative phenomenon. Agents in a multi-agent system usually interact with (or
within) an environment that is modeled explicitly in simulation (Manson and Evans
2007). Often, the system that is considered is treated as a complex adaptive system and
the interplay between agents and agent attributes is used to explore issues of emergence,
feedback, self-organization, phase shift and so on (Batty 2005; Batty and Torrens 2005).
‘Intelligent agents’ are usually designed with a level of artificial intelligence or to explore
the components of general or task-specific intellect, often through automated problem-
solving. Spatial ABMs of intelligence are generally built to represent spatial thinking or
cognition (Frank et al. 1992). There is also a class of agents that might best be described
as bots (Leonard 1997), owing to the resemblance that they share with robots. Bots are
designed to automate tasks in information systems and spatial bots are usually designed to
retrieve and process data in a Geographic Information System (Zhang and Tsou 2009) or
they are built to deploy spatial reasoning in information systems generally.

There exist several interrelationships between agent-based approaches and other formal
schemes for computing, largely because agents are, fundamentally, computers. ABMs
often make use of artificial intelligence (Russell and Norvig 1995) (i.e. formal schemes
that use computational reasoning) to process data input to an agent. This could include
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machine-learning of spatial abilities (Lee et al. 2007), optimization heuristics for calculat-
ing shortest paths in path-planning (Sud et al. 2008), or pattern recognition for determin-
ing salient features (Shao and Terzopoulos 2007). Knowledge discovery and data-mining
(KDD) is a method from artificial intelligence (Fayyad et al. 1996) that is closely related
to agent bots. KDD is useful in agent-based modeling as a formal mechanism for proac-
tively obtaining input for agents and for registering input to libraries of (often ontological
or semantic) information. KDD is used in this way, for example, to develop agent-based
web services for retrieving geographic data from spatial databases (Yu and Peuquet 2009).
Distributed artificial intelligence (Ferber 1999) is concerned with communication and
distributed processing among many agents and the methodology is of relevance to multi-
agent systems because of the plurality of agents used in multi-agent approaches and
requirements for treating agents’ information exchange and related issues of information
fidelity and uncertainty. Distributed artificial intelligence is therefore useful in designing
agent swarms in insect models (Bonabeau 2002) or organizational interaction in models
of communities (Anderies et al. 2004), for example. In a similar tradition, genetic algo-
rithms (Mitchell 1998) are often used in agent-based modeling for expressing how infor-
mation might mutate when exchanged between agents or when contextualized by a
particular agent or environment (Epstein and Axtell 1996). Artificial neural networks
(ANNs) are a data structure for encoding information, computationally, as a series of
dynamically-weighted nodes and links. ANNs are often developed by passing information
through the network using a series of training exercises that assign weights to network
nodes based on a statistical fitting scheme (Gurney 1997). ABMs can be designed as
ANNs by considering agents as nodes and their inter-relationships as links and such
schemes have been used to build ABMs of land-use transition, in which the relative
weighting for transition rules have been derived from ANN training (Li and Yeh 2002).
Similar schemes employ fuzzy logic (Klir and Yuan 1994; Fonte and Lodwick 2004) in
determining proportional membership of agents’ state variables, when determining transi-
tion between land-use or land cover, for example (Wu 1998). ABMs are intricately
bound to Geographic Information Systems (GIS) and may be built within a GIS (Wagner
1997), or they may be used to animate GIS dynamically through some sort of loose- or
tight-coupling of their data models (Brown et al. 2005). Other variants of ABM actually
incorporate functionality from GIScience to extend their processing (Torrens and Benen-
son 2005). The consociation between geographic information technologies and ABMs
has led to the induction of agent-based modeling into the core of GIScience (DiBiase
et al. 2006).

3.2 BUILDING AGENT-BASED MODELS

The scaffolding used in constructing ABMs is relatively straightforward, although almost
limitless configuration is possible with this basic design. Many (although not necessarily
all) ABMs are built as ‘agent-automata’, based on a state–rule–input architecture as
follows:

A � fS;R; Ig � S ¼ S1; S2; . . . ; Sk
i;t

R : fSt; Itg ! Stþ1

�

The A in the equation above represents an automaton with states kit 2 S that describe
its attributes, perhaps in a particular place (i) and ⁄or time (t); states may be derived from
a discrete set, indexed from 1 to k, for example, that might represent different ‘layers’
(Figure 1) of potential vegetation coverage on a landscape (Manson and Evans 2007) or
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the spatial factors that a mover uses to evaluate the utility of housing choices in a prop-
erty submarket (Torrens 2007b), for example. The automaton’s states are malleable to the
influence of a rule, or set of rules {R}, that could be used to govern transition among
states from {S} as time changes from t fi t+1, taking the state at time t and input {Ii,t}
from other automata or external stimuli into consideration. Rules are generally used to
represent spatial processes. Input (I) is almost always determined spatially (Ii) or spatio-
temporally (Ii,t) in spatial science. Indeed, the interplay between states, rules, input, geo-
graphy, and time offers the flexibility in a modeling methodology to cover ‘everything’ of
interest to a geographer and agent-automata are universal computers (Turing 1936, 1938):
anything that can be computed can be represented or evaluated by an agent automaton.

We can consider an agent’s agency, computationally, by characterizing states, rules and
input across any dimension of the agency that we are interested in. We could, for exam-
ple, index kinetic states in {S}, where S1 denotes mobility and S2 denotes stationarity.
The rule R in this example might be purely physical (Reynolds 1999), as would be the
case if it were plucked from Newton’s (1687) laws of motion, for example. Alternatively,
the rule could represent a decision tree to mimic a commuters’ trip-making by automo-
bile (Nagel et al. 1998) as they balance a journey-to-work while also factoring in detours
to drop children to school, deposit dry-cleaning and collect a co-worker for the car-pool.
We could formulate this rule as a set of if–then conditions: ‘if I am running late, then
skip the trip to dry cleaners’, or ‘if highway traffic is congested, then take a route that
uses side-streets’. We could also specify the rule mathematically using an equation, such
as a discrete choice formulation that would assign relative weights to different choice-
points in the decision tree (McFadden 1974). Alternatively, we might use an algorithm or
heuristic, such as a shortest-path solver (Dijkstra 1959) that is designed to minimize time
spent in the car and cost in terms of gasoline consumption.

Agency could be used to represent an agent’s ‘spatial thinking’. Consider, for example,
an agent in a social crowd (Arthur 1994), using its spatial cognition to understand its
surroundings: various states can be used by the agent to register conversations and body
language, the spatial patterns and compositions of social groups and the geography of
social events. These could be based on distance metrics (physical separation, social disso-
nance), adjacency (neighborliness, cardinality), spatial structure (compactness, isolation),
spatial composition (texture, heterogeneity), kinetics (movement vector, angular velocity),
group properties (membership, centrality) or roles (dominance, leadership), for example.
These characteristics (states) could be used by the agent to classify its own conditions as
well as those of the objects in its environment. Rules may be used to determine the
spatial thinking or cognition that an agent employs in processing this information, e.g. by
sorting, filtering, juxtaposing, measuring and so on. Agents might also use rules to mimic
vision, distance and depth perception, pattern recognition, anticipation or attention.
Using these schemes, an agent could, for example (Figure 2), use its spatial awareness and
cognition to assess the social geography in a room and to select an appropriate conversa-
tion to join in a crowd of strangers.

4 Applications of ABMs in the Spatial Sciences (and Geographical Applications of ABMs in Other
Sciences)

Agent-based models have been deployed for a wide variety of geographical applications,
both within and outside the spatial sciences. Indeed, space and spatial thinking have
emerged as a central concept in agent-based modeling with the result that the method-
ology is, to some extent, catalyzing infusion of spatial science into other disciplines,
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reversing the trend in quantitative geography, for example, for the field to adopt (or to
poach) methodology from other sciences.

4.1 MOVEMENT GEOGRAPHY

Agent-based models are used to model movement at macro-, meso-, and micro-scales of
study, for individuals and for groups or as flows. In physics applications, for example, agents
are used to mimic particle movement in gaseous, liquid and granular flow (Henderson
1971). Similar schemes have been used to model pedestrian movement in crowd flow
(Hughes 2003). In these cases, the agency responsible for movement is limited to physical
forces, but in other applications the spatial cognition of agents relative to their surroundings
and their own ‘mental map’ is modeled, allowing for time geography (Paris et al. 2007),
way-finding (Sud et al. 2008), and affective movement (Pelechano and Badler 2006) to be
incorporated. ABMs are also popularly used in ‘micro-simulating’ traffic on highways as a
local-scale extension to classic four-step travel models (Hensher et al. 2004). In these cases,
agents are used to represent cars and their drivers, as well as their proactive and reactive
decisions to accelerate, brake and change lanes (Nagel and Schreckenberg 1992). In some
examples, ABMs have been used to reproduce traffic congestion at macro-scales (an entire
city), synthetically and from the bottom-up of the micro-scale (individual drivers) (Nagel
et al. 1998). There is also a cohort of geographers using ABMs to model meso-scale move-
ment of families through the urban landscape and its relationship to social anthropology;
such models are most often used to simulate housing search and residential choice across
the lifecycle of families (Benenson 1999; Torrens 2007b; Waddell 2000).

4.2 GROWTH MODELS

Models of urbanization and urban growth are particularly well-suited to agent-based
methodologies and agents have been developed as synthetic settlers, developers and relo-
cating households faced with location choices amid economic, physical, social, cultural

Next-nearest group Nearest group Anomaly

Field of view

Movement

Fig. 2. An agent (red) enters a social environment and uses its spatial awareness to identify conditions around it
(groups, movement, anomalies). Within its field of view, the red agent makes eye contact with the yellow agent
and transitions from a state of scanning the room for conversation partners to a state of movement to engage with
the yellow agent.
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and environmental geographies (Benenson and Torrens 2004; Torrens 2006). CA-based
models of urbanization and urban growth have also been built with agent-based function-
ality, largely to simulate the dynamics of land-use transition in city-systems or to evaluate
the role of complex adaptive human, social and economic dynamics in shaping the rate
and pattern of urbanization under varying scenarios (Clarke et al. 2007; Engelen et al.
2002; Torrens 2006).

4.3 SOCIAL GEOGRAPHY AND SOCIO-SPATIAL INTERACTION

Agent-based models of social geography date to the mid-1970s, following popular work
by Schelling (1971) and Sakoda (1971) with grid-based conceptual models of socio-
spatial segregation dynamics. These models, while not originally computer-based and
actually specified as CA, are significant in the social sciences as being exemplars of the
utility of using simple rules among many interacting agents as a vehicle for exploring
socio-spatial dynamics. Both Schelling and Sakoda developed very simple models of seg-
regation between binary groups over space and evaluated the conditions under which
populations could be polarized following the complex emergence of biases in their feel-
ings toward groups of an opposite kind and the tipping-point (what is known as a phase
shift in the complexity literature) at which socio-spatial polarization would occur. Indeed,
Schelling shared the Nobel Prize in economics in 2005 for related work on the dynamics
of conflict and cooperation. More recent work in this area by geographers has focused on
modeling micro-scale segregation dynamics in residential choice (Torrens and Nara
2007b) and examination of the computational geometry of agents’ neighborhood filters
for satisfaction with their residential choices (Benenson et al. 2002).

4.4 ECONOMIC GEOGRAPHY

Agent-based models are popularly used in economic research (Farmer and Foley 2009)
and spatial ABMs are used to infuse geographic context into economic or econometric
simulations, for assessing the role of location, space, place, proximity, distance and scaling
on economic processes. Often, modelers are interested in the influence of geography on
the complexity of economic systems (Schweitzer 2002). Krugman (1996), for example,
has developed CA models of international trade and urban agglomeration economies
based on spatial ABMs. ABMs are also widely used in urban economics, where they
allow for detailed representation of spatial decision-making and its relationship to
community-level economic phenomena in residential property markets (Benenson and
Torrens 2004; Torrens 2007b), gentrification (Torrens and Nara 2007b), land develop-
ment (Semboloni et al. 2004), and even gasoline pricing (Heppenstall et al. 2005).

4.5 PHYSICAL GEOGRAPHY

Agent-based approaches are also employed in physical geography, where agents are
designed to mimic physical components of geographical systems in, for example, geomor-
phology and hydrology. In these cases, agents often represent elementary particles in a
physical system. Their ‘agency’ may be described in terms of the physical factors that
determine their state, as in phase transition between ice, vapor and water. Rules may also
be derived to explain how agents interact at small geographies to determine larger sys-
tems, such as the interactive behavior of snowflakes in blizzards (Kronholm and Birkeland
2005) or rock particles in sediment flow (D’Ambrosio et al. 2003; Vandewalle and Galam
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1999). Use of agent-based modeling to explore the interactions of ‘humans’ as agents
within physical environments and as agents of change – particularly regarding coupled
human-natural systems (Balram and Dragićević 2003) and issues such as landscape erosion
(Wainwright and Mulligan 2004), deforestation (Wainwright and Mulligan 2004), and
land cover change (Veldkamp and Lambin 2001) – within those environments is growing
in popularity.

4.6 HAZARDS

Agent-based models have also seen use for geographical research as a methodology for
simulating risk and vulnerability. Emergency and catastrophic events, by their very nature,
are all but impossible to explore and experiment with in the real world. Models are
therefore an invaluable tool in evaluating plans and scenarios for vulnerability and resil-
ience. Such models need to be realistic to be useful, however and ABM methodologies
can play an important role in modeling the human agency in panic, evacuation, response,
and so forth. Vicsek and Farkas have published some of the seminal ABM work in mod-
eling escape panic among crowd members in egress scenarios, using physics to explore
bottlenecks at exits and the dynamic behavior of crowds as excitable media (Farkas et al.
2002). Helbing et al. have modeled the success of varying strategies for escape from
buildings in emergency situations, from the perspective of individual and collective
human behavior (Helbing et al. 2000). Transportation modelers have also begun to use
agent-like mechanisms as a component of decision and planning support systems, to
better refine their representation of evacuation behavior, in wildfire events, for example
(Cova and Johnson 2002).

4.7 SPATIAL EPIDEMIOLOGY

Agent-based tools have also recently been used to extend the reach of classic diffusion
models in epidemiology research (Epstein 2009) to the scale of individual households
(Barrett et al. 2005). Geographically-explicit ABMs, developed as Geographic Automata
Systems (Torrens and Benenson 2005) in GIScience are now being used in the veterinary
sciences to bolster the ability of models to trace likely paths for pathogens such as foot-
and-mouth disease (Ward et al. 2007). Other researchers are also making use of spatial
science in the development of ABMs for the biology of disease within the body. This is
particularly true of systems biology and computational biology (Kitano 2002b, 2002a;
Noble 2002), where developments in ABMs of local-scale biology are catalyzing new
insights in the simulation of tumor growth, for example (Deutsch and Dormann 2004;
Ermentrout and Edelstein-Keshet 1993).

4.8 BEHAVIORAL GEOGRAPHY

Agent-based modeld (ABMs) are also being used as models of spatial cognition for appli-
cations in behavioral geography (Frank et al. 1992; Golledge and Stimson 1997; Mark
et al. 1999; Torrens 2007a). This trend is related, in part, to recent development of
computational forms of semantic analysis in Geographic Information Systems and for
Web services on the Geoweb (Torrens 2009; Yu and Peuquet 2009; Zhang and Tsou
2009). Uptake of ABMs is this area is particularly keen in investigation of formal models
for spatial way-finding (Raubal 2001b; Torrens 2007a).
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5 The Future of ABMs and Modeling in the Spatial Sciences

The use of ABMs in the spatial sciences, while growing in popularity, is still in a stage of
relative infancy as a topic of academic inquiry. Some relatively serious challenges remain
in advancing the research agenda further.

Much development work with ABMs in the spatial sciences is focused on the devel-
opment of methods and tools. Relatively little work is performed with theory-building
as a primary objective (Epstein 2006). This is understandable given the relative nascency
of the methodology. There is a more long-standing problem, however, with the rela-
tionship between ABMs and theory. Much geographical theory abstracts from the
micro-scale. However (and essentially put), we often lack the theory to derive rules for
ABMs that treat individuals and scale all the way up to large macro-systems (Batty
2005).

Geographers encounter related problems with data and dataware to support ABMs.
Detailed data-sets that might be used to parameterize and calibrate fine-scaled ABMs are
rarely available, owing to privacy concerns of sharing data about individuals, the difficul-
ties of collecting data longitudinally over long time periods and the qualitative training of
generations of geographers used to thinking spatially but in aggregate terms. This is
beginning to change, however; individual-scale data are routinely collected in transport
studies for example, and geospatial technologies and cyberinfrastructure for automated
tracking and sensor webs do provide near-real-time data feeds for whole study groups in
some instances (Eagle and Pentland 2006; González et al. 2008; Lazer et al. 2009). Spatial
scientists and other scientists are also turning to innovative methods for generating ‘syn-
thetic data populations’ for use in ABMs (Bush 2001).

Validating ABMs is hugely problematic because quantitative geography has not focused
on development of techniques for measuring and analyzing individual units as part of
massively interactive, dynamic and non-linear systems (Batty and Torrens 2005; Pontius .
et al. 2007). This has led to some criticism of ABMs as ‘toy models’ in the absence of
robust quantitative schemes that would allow for agent-based simulations to be registered
to or compared with real-world systems (Couclelis 2002; Faith 1998). A related compli-
cation is that ABMs are often allied with complex adaptive systems, yet research into
spatial complexity has gained momentum only in recent years (Manson 2007). This has
led to difficulties in determining the signatures of complexity in ABMs and the real-
world phenomena that they are used to simulate. In particular, it has been quite difficult
for developers of ABMs to create a methodological structure for capturing novel spatial
ensembles and facilitating adaptation and learning in their simulations. Many ABM devel-
opers in the spatial sciences have turned to GIScience in an attempt to overcome some of
these difficulties, with some success thus far. The coupling of ABMs with Geographic
Information Systems has provided a framework for structuring the design and application
of ABMs for theory-experimentation, as well as providing a natural platform for integrat-
ing and reconciling diverse data-sets and validation schemes (Brown et al. 2005; Torrens
and Benenson 2005).

6 Epilog

Agent-based models, although a recent introduction to the spatial sciences, have
become increasingly popular in their use as a tool for model-building and applied sim-
ulation. Early work in developing ABMs for spatial science research was characterized
by the adoption of tools from other fields, particularly from artificial life research
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(Maes 1995) and related developments in physics and ecology (De Angelis and Gross
1992). Quite quickly, however, development of ABMs in the spatial sciences matured
to the point that it began to have a reciprocal influence on these fields (Albrecht
2005). Many spatial ABMs are now used outside the spatial sciences, where the tech-
nique is often referred to as ‘geosimulation’ (Benenson and Torrens 2004): in
computer science (Zhao and Murayama 2007), computer graphics and design (Ali and
Moulin 2005), sociology (Koch 2003), machine-learning and data-mining (Filho et al.
2004), education and training (Furtado and Vasconcelos 2007), veterinary epidemiology
(Ward et al. 2007), and criminology (Melo et al. 2006), for example. One significant
aspect of this cross-fertilization through tool-building is the infusion of ‘spatial thinking’
from the spatial sciences to other disciplines (Albrecht 2005). Another is the potential
for spatial ABMs to contribute to the emergence of next-generation Geographic Infor-
mation Systems, built around semantic ‘process models’ (Torrens 2009; Egenhofer
2002).

These developments are in their relative infancy however and as mentioned earlier, in
this article serious challenges remain to be overcome, particularly in allying ABMs to
theory and data in ways that are extensible and meaningful.
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Appendix 1: A List of Agent-based Modeling Applications

Pedestrian Simulation

• STREETS model (Haklay et al. 2001)
• PEDFLOW model (Kukla et al. 2001)
• Notting Hill carnival model (Batty et al. 2003)
• Social force model (Helbing and Molnár 1995)
• Level of service models (Blue and Adler 2001; Gipps and Marksjö 1985)
• Space syntax models (Turner and Penn 2002)
• Recreation models (Gimblett 2005; Itami 1988, 2002; Itami et al. 2003)

Crowd Simulation

• Animated urban models (Musse and Thalmann 1997; Pelechano et al. 2005; Tecchia
et al. 2002; Torrens 2007a; Treuille et al. 2006)

• Machine-learning models (Lee et al. 2007; Lerner et al. 2007, 2009)
• Procedural crowds (Haciomeroglu et al. 2008; Ken et al. 2008; Prescott et al. 2004;

Ulicny et al. 2004; Yersin et al. 2009; Yeh et al. 2008)

Evacuation Models

• EXODUS (Galea et al. 1996; Gwynne et al. 1999)
• Legion (Berrou et al. 2007)
• HiDAC (High-Density Autonomous Crowds) (Pelechano and Badler 2006)
• Physics models (Gwynne et al. 1999; Vicsek 2003)

Sociology

• The Brookings Civil Violence Model (Epstein 2002)
• Sugarscape (Epstein and Axtell 1996)
• Schelling model (Schelling 1969)
• Sakoda model (Sakoda 1971)
• Residential segregation (Benenson et al. 2002)

Traffic Models

• TRANSIMS (USA) (Barrett et al. 1999; Nagel et al. 1998)
• TRANSIMS (Europe) (Cetin et al. 2002)
• MATSIM (Balmer et al. 2009)
• PARAMICS (Wylie et al. 1993)

Urbanization

• SLEUTH (Clarke et al. 1997, 2007)
• Sprawlsim (Torrens 2006, 2008)
• Dynamic Urban Evolution Model (DUEM) (Batty and Xie 1997; Batty et al. 1999,

2007; Xie 1996)
• MURBANDY (Engelen et al. 1995, 2002; White and Engelen 2000)
• The Cardiff model (Wu and Webster 1998, 2000)
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• SIMPOP (Sanders et al. 1997)
• Urbanism (Waddell 2002)

Disease and Epidemiology

• EPISIMS (Barrett et al. 2005; Eubank et al. 2004)
• GeoGraph (Dibble and Feldman 2004)
• Tumor models (Deutsch and Dormann 2004; Malleta and De Pillis 2006)

Gentrification

• GraphCA (O’Sullivan 2002)
• Salt Lake City model (Torrens and Nara 2007a)

Artificial Life

• Boids (Reynolds 1987, 1993, 1999, 2006)
• Animats (Magnenat-Thalmann and Thalmann 1994; Meyer and Guillot 1994; Sims

1994; Terzopoulous et al. 1994)

Land-use and Land Cover Change

• SLUCE (Brown et al. 2002, 2005)
• FEARLUS (Polhill et al. 2001)
• Steven Manson (Manson 2000, 2005; Manson and Evans 2007)

Way-finding and Navigation

• Ontological models (Frank et al. 2001a; Raubal 2001a, b)
• Navigation meshes (Gayle et al. 2009; Lamarche and Donikian 2004; Nieuwenhuisen

et al. 2007; Paris et al. 2007; Pettré et al. 2006; Salomon et al. 2003; Sud et al. 2008;
van den Berg et al. 2008; Yersin et al. 2005)

Bots

• GeoAgents (Yu and Peuquet 2009)
• Web services (Zhang and Tsou 2009)

Economic Geography

• CityDev (Semboloni et al. 2004)
• Gasoline pricing (Heppenstall et al. 2005)
• Urban agglomeration (Batty 2001; Fujita et al. 2001; Krugman 1996)

Physical Geography

• Avalanches (Kronholm and Birkeland 2005)
• Sediment flow (D’Ambrosio, Di Gregorio and Iovine 2003; Vandewalle and Galam

1999)
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• Human-environment interaction (Balram and Dragićević 2003)
• Landscape erosion (Wainwright and Mulligan 2004)

Appendix 2: Development Environments for ABMs

An overview (Railsback et al. 2006)

• RePast (North et al. 2006)
• NetLogo (Blikstein et al. 2005)
• Swarm (Luna and Stefansson 2000; Minar et al. 1996; Stefansson 1997, 2000)
• TRANSIMS (Barrett et al. 1999; Cetin et al. 2001; Nagel et al. 1998; Nagel and

Rickert 2001)
• MATSIM (Balmer et al. 2009)
• DUEM (Batty and Xie 1997; Batty et al. 1999, 2007; Xie 1996)
• SLEUTH (Clarke et al. 1997, 2007)
• MAML (Gulyás et al. 1999)
• MURBANDY (Engelen et al. 2002)
• Urbansim (Waddell 2002)
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