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Abstract

A complex system is an entity, coherent in some recognisable way but whose elements,

interactions, and dynamics generate structures and admit surprise and novelty that cannot be defined

a priori. Complex systems are more than the sum of their parts, and a consequence of this is that any

model of their structure is necessarily incomplete and partial. Models thus represent simplifications

in which salient parts and processes are simulated, and given this definition, many models will exist

of any particular system. In this chapter, we explore the impact of this complexity on validating

models of such systems. We begin with definitions and then identify key issues as being concerned

with the characterisation of system equilibrium, system environment, and the way systems and their

elements extend and scale. As our perspective on these issues changes, then so do our models with

implications for their testing and validation. We argue that changes in the meaning of validity, posed

by the use to which such models are to be put, are central to this debate, drawing these ideas together

as conclusions about the limits posed to prediction in complex systems.

q 2005 Elsevier Ltd. All rights reserved.

1. Defining complexity, modelling complexity

This inquiry is motivated by a long-standing concern for the most appropriate ways of

testing and validating large scale models, specifically those designed to simulate and

predict urban development. These types of model have always been characterised by their

extensiveness but since their inception over 40 years ago, there has been a slow but

inexorable rise in their complexity. This has been hastened by a sea change in the relation

of science to knowledge, and the way we are able to use science in society. In many senses,
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our growing need for ever more complex models and the increasing difficulties in their

validation mirrors the longer term shift from a certain to an uncertain world. The first 50

years of the last century, perhaps even the previous 200 years, was dominated by the

notion that science would yield answers of the simplest kind to a wide range of applicable

problems. But this certainty has gradually dissolved, and the reasons for this are diverse.

At one level, this may be no more than one of those unfathomable psychological shifts in

our awareness of the limits to our knowledge which occur periodically. At another level, it

may be due to more experiences in using science in the quest for exact answers to socially

important problems and the growing realization that such certainty is illusory. The recent

history of social forecasting in this regard has been salutary. Both macro and micro events,

from predictions of the stock market and the general performance of the economy to more

local issues such as demographic change and traffic movements in cities seem beyond our

understanding, not least our control, in that extraneous events now seem to dominate their

behaviour. Although this may always have been the case, the models that were fashioned a

generation or more ago now seem wholly inadequate.

None of this has daunted our curiosity in using science to explain and predict but it has

changed it. Fifty years ago, the quest to build useful theories and models was dominated by

the view that we could simplify and distil the essence of things so that we might capture

sufficient of the social reality for rudimentary comprehension and decision. Despite

recognition that the world was complex, it appeared simple enough to produce robust

theory and models that might be employed in applications. With increasing uncertainty

and the growing perception that the systems that we deal with are intrinsically complex,

simplicity no longer seemed the watchword in the development of techniques and models.

Prediction is now couched in qualification, and our science has become less orientated to

forecasting, more of an aid to understanding and structuring debate. This is seen nowhere

more clearly than in the shift to constructing ‘what if’ scenarios which now dominate most

model-building.

The systems approach that was the foundation on which most operational urban

development models were predicated [3], is strident in its advocation of three key

principles of model-building. The first involves defining the system in its wider

environment in such a way that the system has a crisp boundary with the outside world; in

short, interactions of interest must be much denser within the system than outside. The

second has become more controversial and this revolves around the idea that the system

must manifest some equilibrium, that processes of change within it must imply some

equilibrium and, if such processes are well behaved, then the equilibrium itself might be

the focus of prediction. The third principle suggests the elements of the system that must

be uniform or homogeneous in some sense, with the focus on explaining the order and

regularity that such homogeneity implies. These principles did once appear to be

implementable for urban systems but it is now easy to argue that none of these apply to

even the simplest systems of interest to policy-makers. Such systems are impossible to

close, their usual state is far-from-equilibrium, and often no such equilibrium ever exists.

They are composed of heterogeneous agents and objects; indeed their very richness comes

from such heterogeneity. The quest of science, it is now argued, should be to grapple with

explanation and frameworks that attempt to contain, if not explain, such diversity. None of

this bodes well for models in which traditional prediction is the goal.
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During this period, systems theory has not remained still for complexity theory has

gradually changed its form, some would say enriched it, but few are bold enough to define

its current scope [7]. Most commentators define complexity implicitly through its various

attributes and dimensions, and this is the path we will follow here. The very best way to

characterise a complex system is by the states or conditions it can take on. If there are n

elements describing a particular state, and each state is described by the (binary) existence

or otherwise of a particular condition for each element, then there are 2n distinct states. For

example, there is a whole class of urban models built around cellular automata where the

state of the system might be described by n cells with each cell being developed or not

developed. In a system with say 10,000 cells or zones, then the number of possible states

defies description. Add to this different ways or rules of generating these states, then the

problem begins to scale in a manner that cannot be handled by conventional theorising. Of

course, none of this is very new and this characterisation of complexity has been known

for a long time. However, this change in worldview has transferred attention away from

the more restrictive aspects of such models to their existence properties, with the

consequence that the systems we deal with only now are perceived to have boundless

complexity.

Most would agree that complex systems have an extensiveness in their elements or

objects that make any fixed description incomplete. This immediately implies that all

possible forms of the system are unrealisable, and their representation is rarely stable. In

short, complex systems generate a dynamic which enables their elements to transform in

ways that are surprising, through adaptation, mutation, transformation, and so on. This is

sometimes described in terms of a system generating new designs often expressible as

new forms. In any event, the hallmark of this kind of complexity is novelty and surprise

which cannot be anticipated through any prior characterisation. All that can be said is

that such systems have the potential for generating new behaviours. Holland [10], for

example, describes complex (adaptive) systems as being systems that maintain their

structure and coherence under all imaginable changes, in short through adaptation. Allen

[1] goes much further and defines complexity in terms of the sources of unexpected

change or ‘unpredictability’. He says: "The simplest definition of a complex system is

one that can respond in more than one way to its environment. The ‘choice’ in response

arises from the fact that non-linear processes within the system can potentially amplify

microscopic heterogeneity hidden within it". This, he argues, is the origin of that

overworked term emergence, another way of describing behaviour that cannot be

anticipated.

From this casual introduction, we can identify two key elements that define our view of

complexity and complex systems models. The first is ‘system extensiveness’ along any

spatial, temporal or topical dimension. Such systems cannot be simplified in the

conventional way by reduction or aggregation, for in doing so, the richness of their

structure would be lost. This, of course, is directly countered to the usual strategy in

science, which involves distilling the essence of a phenomenon, the essence being defined

in relation to some purpose, and thence using that essence as the basis for theorising and

modelling. The second issue involves process. This can often be portrayed as the system’s

dynamics in space and time in which unexpected change takes place, new objects emerge,

and existing objects transform. There are some logical difficulties in all of this, for once
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objects have emerged and once one has considered the logical limits to a system and its

possible boundaries, to make any progress in terms of crisp and clear representations, then

the system has to be bounded in space and time [5]. Much of complexity theory has, in

fact, been concerned with demonstrating models of systems that were initially deemed

inexplicable because they demonstrated surprising behaviour. Once understood, this

behaviour is no longer surprising, but invariably it can only be explained by processes that

exist at a micro level giving rise to phenomena at a macro level which, in turn, cannot be

explained in traditional macro terms. In short, much of complexity theory and its

modelling is rooted in explaining behaviours that have already been observed and in some

sense, can thus be said to be no longer complex. As Gregory [8] has so eloquently noted:

"Here ‘emergence’ does not mean mysteries popping out of the undergrowth; it means that

with sufficient understanding of interactive processes, we should come to understand why

a complex whole has properties its parts lack on their own, and how the parts are modified

by the context in which they lie" (quoted in [2].

Interesting as these issues are, we will put them aside in this discussion. We are more

concerned with demonstrating that a new generation of models alluding to complexity

theory often, indeed usually, fall back on traditional strategies which have been conceived

for a more certain, simpler world where the ambiguity characteristic of complexity is

absent, or at least not to the fore. Our discussion, therefore, will focus on how we might

model complexity in the face of infinite variety; or rather not about how to model it per se,

but how to face it in terms of traditional ideas based on the validation of some structure

against a well defined representation encoded in ‘data’. This presupposes that even if a

system is infinitely complex, then some simplification must take place. But how much?

And more importantly, how do we deal with knowing that our models will always be

‘inadequate’ in a predictive sense? The issue of parsimony is under fire here, and there is

little doubt that our own field has barely broached these issues. We persist in developing

models that are intrinsically complex but which we attempt to validate against some reality

which we represent as intrinsically simple. We do not seek to provide answers to this

dilemma although we will identify strategies for dealing with it, which will invariably

broaden the context.

We begin by exploring the traditional role of validation in modelling, in confronting

models with data, and in replicating the traditional role of experiment in a social context.

We will then discuss the problem of system definition—of bounding the system from its

wider environment in time and space. This problem has been relaxed in various ways as

we have learnt more about models and modelling and this has translated itself into ideas

about simulation. Simulation differs from modelling in that simulations are dynamic and

open-ended. We will chart this road to simulation which contains the essence of what

Epstein [5] calls ‘generative modelling’, and we will discuss how this style of modelling

has come to replace more traditional parsimonious approaches. We then broaden the

context, examining the role of the model, the modelled, and the model user. It is in this

context that changes in the emphasis given to the role of validation of a traditional kind can

be legitimised. Finally we conclude by calling for this debate to become central to

simulation and to the decisions used in constructing, testing, and using any kind of social

systems model.
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2. Traditional conceptions of theorising and modelling

The conventional process of model-building involves generating and testing theory

through a cycle of induction and deduction. In this we follow Popper [15] who argues that

science proceeds through a process of conjecture, thence refutation which is accomplished

through a mixed process of induction and deduction. Models are theorised as hypotheses

— inductively with respect to data or prior ideas — and are then tested and refined through

confronting their predictions with new data both deductively and inductively. The process

is confounded. Theories may come out of the blue insofar as they are the product of

insights but they can usually be traced to assembling data, deriving relations, constructing

hypotheses, testing these on new data, falsifying them, maybe refining or modifying them

to make them more or less bolder, as the data and context suggests. In essence, the process

is one in which testing and validation involves both theory and data with no privilege

given to one or the other.

There are two rules which have been taken as central to the process of developing good

models. The first is the rule of parsimony — Occam’s razor — which suggests that a better

model is one which can explain the same phenomena with a lesser number of intellectual

constructs. This is often translated as lesser data or only as much data as is needed, and it is

in this sense that theories and models simplify the real world. The second principle relates

to independence in verification. A theory which is induced using one set of data needs to be

validated against another independent set. In short, if a model is driven by data from one

situation, being fine tuned or calibrated to that situation, the only valid test of the model is

to then apply it to another situation independent of the first. As we shall see, parsimony and

independence in validation are criteria that are rarely fulfilled in traditional modelling. In

general, the essential difference between traditional systems and complex systems models

is one where it is possible, in principle, to meet the criteria of parsimony and independence

for the first set but not for the second.

We will illustrate the principle of parsimony first for its serves to show how data and

model structure determine verification. The simplest model is one in which an dependent

variable y measured over some range of values is explained in terms of some independent

variable x measured over the same range. Often more than a single independent variable

x1; x2;.; xn is used to explain variation in a single variable y with the implication that each

independent variable accounts for some independent component of the variation in y. It

could be argued that the more independent variables used in this way, the less

parsimonious the model becomes and there is a natural tendency to think of these less

parsimonious models as being over-determined. The simple graphical illustration in Fig. 1

makes the point when we compare (a) with (b). If we were to try to explain more

dependent variables y1; y2;.; ym with less independent ones as we show in diagram (c),

then there is a clear problem in that there can be no unique solution. Sometimes it is

convenient to think of this kind of problem in terms of balanced equations which to be

solvable, simultaneously say, must imply as many unknowns as knowns, as many

dependent as independent variables. In fact, econometric models which replicate systems

of equations sometimes partitioned into exogenous and endogenous variables invariably

invoke such conditions of balance or simultaneity in effecting robust solutions. This is

illustrated in model structure (d).



Fig. 1. Model structures linking dependent to independent variables.
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All the model structures illustrated above imply some process of linking independent to

dependent variables. This process in models which are statistically robust, is usually

simple: it is additive, as in a linear model, or at best non-linear but in a tractable,

mathematical way. Complications begin to arise when the processes involve rule-based

systems which in practice cannot be reduced to tractable mathematical operations. Each of

these model structures may best be thought of as one in which distinct processes determine

the outcomes or predictions. For example, in Fig. 1(a), there is one and only one process

determining y. In Fig. 1(b), there are three processes determining one output. In Fig. 1(c),

there are three processes determining three outputs but the concern is that these three

processes are determined as variants of only a single input. In Fig. 1(d), seven processes

determine three outputs but these seven processes are determined by three inputs and thus

the system is in a sense balanced. Strictly where there are more dependent than

independent variables, then the processes involved must be further specified with

independent data so that there is as much information to determine the outputs as there is

input to the model.

Most models of urban development that were constructed for policy purposes from the

1960s on paid some homage to these principles. The best examples were those which

mirrored model structures popularised in linear econometrics, the EMPIRIC model for

Boston being the example par excellence [12]. The models built in the spatial interaction

tradition (see Wilson [19]) also tended to meet these conditions, with distance playing a

key determining role in predicting trip distributions, and enough independent data on

location and trip distribution being assembled to provide robust calibrations. There is a

sense in these models that you are not getting ‘something for nothing’, although they still

suffer enormously from limits posed by the way the systems to which they have been

applied were articulated and the inadequacies of theories that were assumed to be at work.

Perhaps the clearest model which broke from this tradition and which illustrated distinctly

the problems posed by the current generation of models based on complexity was

Forrester’s [6] Urban Dynamics model. Apart from the fact that the model entirely defined

away spatial variation by treating a hypothetical inner city disconnected from its wider

environment, the model was not calibrated to data in any way. The model hypothesised

countless dynamic relations involving the stocks and flows determining employment and

residential activity volumes in the city which were culled from casual knowledge and

observation. What validation there was involved superficial observations that the

simulation appeared consistent with the characteristic features of US inner city areas at

the time. More controversial were the longer term dynamics of the model which mirrored
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logistic growth and a vicious spiral of decline from which the city could not break free. It

might be, as was argued at the time, that the purpose of this model was to raise the level of

debate about the inner city, and not to provide an operational simulation. It was to foster

discussion about possible policy issues. This is an argument we will return to as it is

usually used to legitimate complex systems models which cannot be validated in the

traditional sense. It is worth noting that Forrester’s model, as one exemplar for the broader

set of ‘systems dynamics’ techniques in management which Forrester himself developed,

was one of the first to polarise the debate.

The second principle of good model-building involves testing the model in such a way

that it can be validated in a context that is independent of that for which it has been initially

developed. This is no more or less than the simple requirement in laboratory science that

setting up an experiment, then validating the theory once is not a sufficient test; so much

fine-tuning goes into setting up the experiment, that it is necessary to see how this transfers

— generalises — to other situations. In terms of urban models, this is a strong requirement;

it implies that the first true test of a model is not on the place where it is first developed and

fine-tuned but in a second or subsequent place where it performs equally well or badly.

Such dual applications have rarely been the case for reasons of happenstance rather than

poor scientific practice. What usually happens is that some model structure is successively

refined on different places and at different times, and in this way a little confidence is built

up in the model’s validity. The problem is often that the model is sufficiently different in

each time and place to limit its generality. A formal study of different cross-sectional land

use–transport models in the Lowry vintage which was designed to test the same model

variants on different places was mired in data and computer software incompatibilities

between these different places. Despite the heroic sentiments on which this project was

established, the analysis was inconclusive [18].

There is, however, a rather special case where data-rich models containing

homogeneous undifferentiated processes linking inputs to outputs do meet this

requirement of independence. In situations where the observations are very extensive

and homogenous, and where the system can be partitioned into distinct sets or regions

without doing gross violence to its structure, then it is possible to develop the model on a

sample of the data and validate it on the remaining full data set. This is a little like fitting a

model to one part of a city and then validating it on the rest. Invariably this is not possible

in cities for they are ‘too complex’. Spatial variation is such that one would not expect a

model of, say, the inner city to apply in quite the same way to a model of the suburbs.

Nevertheless, where data sets are extensive and where the relations between inputs and

outputs are assumed to be ubiquitous, then model fitting on a sample of the data followed

by validation on the full set, less the sample, is quite widely practised. The best examples

involve extracting pattern as in remote sensing data or in fitting neural nets to large data

sets where the assumption is that everything influences everything else. However,

although this is not usually possible for urban models, it is still possible to build structures

which meet the conditions of parsimony and data balance and to validate these types of

models in two places rather than one, which the principle of independence suggests. Such

tight conditions require the model to be developed in more than one place by the same

modeller working under the same conditions. Again for practical reasons, this is rarely

possible.
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So far, we have characterised models as being structures in which inputs are related to

outputs in a simple causal manner; that is, where the relations between inputs and outputs

are not usually the focus of inquiry, with assumptions being made that the way these

relations are represented is robust. In the models sketched in the diagrams above, the focus

is not on the nature of these relations but on whether or not the outputs are logically related

to the input data. If they are not, then the usual strategy is to change the inputs, not the

nature of the relations. In so far as the relations embody structure, these are determined

from prior theory according to what seems to make sense. It is a straightforward matter to

illustrate how these relations become ever more complex by simply adding intermediate

outputs and stringing the relations together in the kind of chain that is illustrated in Fig. 2

below:

Successive relations convolute the original data series in such a way that there is little

doubt that the causal processes invoked must be subject to detailed assessment and

validation if the structure is to be meaningful. In fact, this strategy is often used in

pragmatic model-building where the emphasis is on simply extracting some pattern in the

initial data series x1, x2, x3. Neural nets are of this nature but it is unlikely that they have

any real meaning for the kinds of models that are now considered to be appropriate

frameworks for understanding complex systems.

As we have implied, one focus of complexity theory is on ways in which processes

generate patterns. In terms of the structure illustrated above, a typical model in the urban

domain might be illustrated as follows. Imagine that each independent variable involves

an attribute or attributes of some location — represented by a cell or spatial agent. This cell

has some state which might be land use. The process of changing land use, which is the

dynamic that the model needs to capture, might thus be construed as following a number of

stages, as for example, through the process of land conversion. It will depend of course on

other locations or cells in the system and land might go through several processes of

change before it becomes fully developed: it might be purchased, assembled, remain idle,

be used for temporary facilities and so on. The causal chain above might represent this

process. In principle, each of its elements should be explicit and capable of being validated

with observed data. In practice, this is rarely if ever the case. The data set would be too

large, it would be impossible to collect in its entirety, it may even be impossible to observe

and measure. Yet the processes are known to be important. Other criteria must thus be

used. If the model is broadened and the input elements are no longer confined simply to

cells but become heterogeneous with respect to type — x1 might be cells, x2 agents, x3

institutional constraints and so on, then the processes implied by the chain are even more
Fig. 2. A model structure incorporating multiple processes.
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complex; the system diagram above simply shows what might be related to what without

any implication that there is a standard way of fitting dependent variables to the

independent. Add to this sets of parameters, themselves unknown in strength and value,

then the problem begins to explode and very soon there is no way that all elements of the

model can validated. This is even before any consideration that the model structure

contains processes that generate unknown or emergent objects or patterns. In such cases, it

is impossible to sweep across the parameter space in an effort to calibrate the structure,

even though this time-honoured method is the usual strategy for confronting the model

with data.

In the face of these difficulties, the model-builder often resorts to what we will call here

the ‘Forrester strategy’ — not testing the implied causal structure at all, but relying on a

simple correspondence between inputs and outputs, and also working up the model from

discussions with politicians and decision-makers who do not evaluate their system of

interest in the reflective, somewhat detached manner of science. We do not mean to

denigrate this strategy because it is often useful and in certain circumstances inevitable.

Forrester [6] himself, in developing his model, said: "I approached these discussions

knowing the conceptual nature of the structure being sought, but not the specific details of

the structure or the institutional components and behaviour to be fitted into it. The others

brought the knowledge of the pressures, motivations, relationships, reactions, and

historical incidents needed to shape the theory." (p. ix). And he continued by saying:

"Actually the book comes from a different body of knowledge, from the insights of those

who know the urban scene first hand." (p. x).

Moreover in very complex systems, the notion of seeing if a model produces plausible

patterns which look right in a superficial way has been lauded as a much more appropriate

way than the mindless statistical testing that has taken place with many modelling ventures

in the past. It was Mandelbrot [13: 21] who said in the context of fractal geometry: ". to

see is to believe .". The critical issue in complex systems models is that this is not the

only strategy. There are many qualitative tests that are possible with respect to how

plausible structures are which generate believable predictions, and these should be

mapped out. In fact, there has been hardly any work whatsoever on strategies for

validating models which deal with intrinsically complex systems, and one purpose of this

paper is to raise awareness and encourage debate in this domain.

To summarise before we begin to sketch out the key elements of intrinsically complex

systems and their models, it is clear that the difference between traditional models and the

new generation that we are appealing to here is one which relates to how causal structures

are treated. In traditional urban models, the focus is on simple causes. Insofar as these are

convoluted, it is through making the system extensive, through repeating these simple

causes over many categories but not by elaborating the causal chains that link inputs to

outputs. The most extreme variants of this style simply assume that the causal structure is a

homogeneous nexus of additive factors as in multiple regression or in neural nets. The

emphasis is largely on validating these kinds of models using data which drives these

simple causes. In contrast, complex systems models have multiple causes which display a

heterogeneity of processes that are impossible to observe in their entirety. The focus is on

more qualitative evaluation of a model’s plausibility in ways that relate to prior analysis of

the model’s structure. In both styles of model, the wider context is important in validating
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the model too. What the model is to be used for—its purpose—is all important,

particularly so where a degree of belief in its predictions may have to be suspended

because of its complexity. Criteria for developing such models are not well-worked out

and in urban systems theory this has become an important challenge.
3. The problem of closure

A key concept in general system theory involves the notion of the system and its

environment. Systems are usually defined as existing in a wider environment with the

system containing all the quantities and qualities of direct interest but with a recognition

that for the system to function, it must import and export energy into and from its wider

environment. Good system design assumes that the interactions within the system are

much denser in strength and connectivity than those between the system or its environment

and in this way, a system is assumed to be relatively independent of its environment. In

short, although it may not be possible for a system to function without considering the

relations to its environment, the central focus of interest is on the interactions within the

system. Whether or not such criteria can be applied to the systems of interest here is a moot

question. Much work has assumed that systems can be defined in this way but there is

plenty of anecdotal evidence that suggests that only the most trivial systems strictly meet

these requirements. Indeed some of the most powerful critiques of contemporary urban

modelling have been based on the artificiality of closure. Again the example par

excellence is the Forrester [6] model of the inner city, which entirely ignored the

dependence of the inner on the outer city and vice versa, through obvious links such as the

journey to work and industrial dependence.

Complexity theory relaxes this criterion somewhat. In particular, the focus is on

systems that scale—from the local to the global. Cities and economies are structured in

this fashion as all studies of world cities in the modern economy demonstrate. One of the

most intriguing features of complex systems is their ability to simulate the way local action

generates some global order, and this in itself is often taken as the very definition of

complexity. The ability of systems to handle local action that generates global pattern

implies emergence in that there is nothing in the local actions that implies the global

pattern. Usually it is the interactions that take place locally that generate the higher order

pattern, and it follows that for such systems to be simulated, this kind of link cannot be

broken through artificial closure. The archetypal example of local action leading to global

order is in the phenomenon of segregation in residential neighbourhoods due originally

to Schelling [16], in which a mild preference for living adjacent to one’s own group leads

to very strict homogeneous spatial segregation. In such cases, it is clearly impossible to

simulate neighbourhood dynamics without recourse to the entire city as the effect would

not be captured without considering all neighbourhoods.

In a wider context, it is hard to know how to simulate the development of the financial

core in a world city, for example, without some dynamics of the more global economy of

cities being present within the model, and it is easy to see how this argument might

ultimately imply that all cities everywhere need to be modelled simultaneously for the

essential features of interest to be captured. This problem also appears to have become
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more intense as cities have become more interconnected through the development of

technologies that aid interaction. Moreover, the very notion of a system of interest being

one that is a cluster within a wider system is questionable. Systems function because of

local and global connectivity as, for example, in social networks which are held together

by weak ties, rather than strong clusters. In short, the idea of partitioning a system and

fixing a level of inquiry at a particular layer in the hierarchy of connections can be

problematic. Recent research into the phenomena of ‘small worlds’ is revealing, where the

very notion of a ‘small world’ implies such local-global linkage [17].

Closure is a generic issue in defining systems although we can distinguish between

temporal and spatial ways of separating the system from its wider environment. In terms of

modelling time, many systems have been closed entirely. Time is defined away and the

system studied as though it were in equilibrium. In most systems, equilibrium is an

assumption based on convenience. For living systems, there can be no intrinsic

equilibrium although there may be steady-state activity in which the system renews itself

in a balanced manner. For a time in the middle of the 20th century, it did seem as though

cities and economies were in some sense stable but with the passing of the industrial era, it

is all too clear that the structure of any city cannot be explained at a single point in time.

Equilibrium is a concept that is also inconsistent with interactions between the local and

the global. Systems become ever more volatile as we disaggregate to basic units, or rather,

systems become ever more homogeneous as we scale them up by averaging activities. In

one sense, what is to be explained is how this scaling and averaging takes place—how

cities appear stable and equilibrium-like at higher spatial and temporal scales than at the

finer scale. Moreover if we separate their dynamics into coarse and finer spatial scales,

then we would miss the fact that policies designed for one scale often have an impact at a

different scale; in dealing with one level of the hierarchy only, true consequences are

missed.

In fact, if the focus is broadened a little, cities must be seen as being far-from-

equilibrium in that their order is a consequence of continual change. What this implies is

that the dynamics of cities is unlikely to be very smooth. Although volatile bubbling

change at the low level gets averaged out as we aggregate, this does not appear to lead to

radical changes in the trajectories of systems such as those formed through phase

transitions and similar discontinuities. Much of course depends on how the system is

articulated but the message of complexity theory is that to understand significant urban

change, then the system must not be closed in such a way that its dynamics are reduced to

only one variety when several different varieties are clearly present. This is not simply an

issue of spatial closure for it also relates to the time interval over which the dynamics are

captured. Averaging time intervals also reduces variation but an equally significant issue

involves the position at which the dynamics are first recorded. Inevitably there has to be

some temporal closure in that the system must be started at some point in time. This is

equivalent to choosing initial conditions and if these are selected in such as way as to

destroy critical processes, then the entire dynamics can be confounded.

In urban systems, closure with respect to the range of activities, land uses, agents, or

objects which represent the focus of inquiry, is similarly problematic. However, it is when

classes or attributes interact with dynamic and/or spatial patterns that significant concerns

arise. For example, by aggregating two or more activities together, critical dynamics might
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be collapsed or spatial variation cancelled out. In one sense, this kind of issue is related to

scaling which in turn relates to how different levels of hierarchy relate to one another.

Effects that occur similarly between levels, which can sometimes act as the basis for

partition but in a different vein, might require explicit representation, thus mitigating

against any partition. We could continue our discussion of system closure almost

indefinitely but the key point that we have made several times is that complex systems are

difficult to close from external influences. Indeed the very definition of complexity

presupposes that systems have infinite extent and variety and that their unique and novel

behaviour comes from the interaction of diverse effects that must somehow be accounted

for within the system definition and representation. This implies a contradiction: systems

that cannot be bounded and separated from their wider environment must be inherently

unpredictable.
4. The road to simulation: artificial systems as virtual laboratories

Models are, by definition, a simplification of some reality which involves distilling the

essence of that reality to some lesser representation. Such simplification is usually for some

purpose although in science that purpose may be entirely justified in terms of satisfying our

intellectual curiosity. Usually it is more than this although intellectual inquiry is generally a

prerequisite. Nevertheless, any model will always contain more assumptions about the

reality than are testable in that the very act of defining the system of interest involves

contextual assumptions that remain implicit, hence not testable without a radical change in

perspective. The difference between complex systems models and those that appeal to the

principles of strict parsimony—those that we have been referring to here as traditional

models—is one that revolves around the explicitness of assumptions. In essence, traditional

models are those in which all relations defining the model are testable while complex

systems models have chains of relations that are explicit but untestable in principle and/or

untestable because data and observations of their processes are not available.

We appreciate that some might argue with our suggestion that complex systems models

are not usually parsimonious. There are clearly examples of models of complex systems,

such as the Schelling [16] models of spatial segregation, which articulate local action that

leads to global pattern in the simplest terms. However, even in that case, although the

model is simple in its rules, observations of how individuals exercise their preferences to

segregate are rarely available and the data to test such models is never complete. A clearer

way of signifying the difference between traditional and complex models involves the way

they are parameterised. Traditional models are those in which all processes linking their

inputs to their outputs can be fine tuned by parameters that enable their outputs to be

matched to data. In contrast, although all the processes within a complex system model

might be capable of parameterisation, many of these are not parameterised; there is no

intention of fine tuning these values to match observations for such observations are not

likely to be available.

A good example of the difference between these two types of model can be elaborated

through traffic models of pedestrian movement. A spatial interaction model based on

principles of gravitation would assume that travel densities would vary according to some
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function of travel time or distance or cost between any origin and destination. That

function could be parameterised in such a way that the predicted traffic densities would be

matched against observed volumes. If the functional form is varied within the overall

bounds of the problem, finding the best fit of some relevant function to data is usually

possible. However, if the model were conceived of as one in which the actual paths of the

pedestrians according to the local geometry of the system were to be modelled—and it

might be assumed that for a good prediction of the traffic densities of pedestrians the local

geometry is important—then various processes relating pedestrians to local geometries

through their cognitive and visual abilities could then be linked to more aggregate origin

and destination behaviour. The number of degrees of freedom of the problem thus

explodes enormously in that various algorithms for obstacle avoidance and congestion

would have to feature. Usually only very general data is available for such obstacle

avoidance and it is unlikely, in this latter case, that the model could be fitted to data in its

entirety. Moreover the number of different but equally plausible causal structures enabling

the agents to proceed through the local environment make testing all model types against

data quite impossible.

To summarise, in traditional models we can divide the set of assumptions into those that

are explicit, hence testable, and those that are implicit. The parsimony of these models

resides in the fact that all the explicit assumptions must be testable. In complex systems

models, explicit assumptions can be divided into those that are testable and those that are

not. This immediately presents a dilemma in that these two sets of assumptions often

interfere with one another, and it is usually impossible to test one set and not the other. In

short, the fact that such models can only be tested partially means that they cannot be

validated at all, and even though it is possible to associate some data to some subset of

these models’ outputs, this is rarely done as such a test is seen as arbitrary. Complex

systems models are, however, constructed in the full knowledge of these difficulties.

Difficulties arise, however, when their assumptions are not laid bare and remain hidden.

Such models are usually justified on the following premise: that the processes that

underpin them are too important to leave out and that it is preferable to include such

processes even though it is not possible to validate them against data. The trouble with this

view is that it is difficult to justify and its rationale usually depends on intuition. Moreover,

the choice of whether to develop a complex systems approach or its simpler antecedent

often depends on wider issues involving the purpose of the model, the policy-user context

in which it resides, and sometimes the ‘cultural’ context in which we find ourselves which

affects the degree of acceptance of the problems involved.

Although there is no one-to-one correspondence between complex systems and

simulation models, we will loosely refer to the methods of complex systems models as

simulation. Simulation usually implies some form of computational process which in

urban systems is often mapped onto a temporal dynamics in some explicit way. Simulation

in time involves recursion if only because the same model structures are repeated through

time (with one set of outputs becoming the next time period’s inputs). Such models often

generate more than one outcome. Indeed the possibilities for generating an entire range of

scenarios always exists in time for slight changes from time period to time period might be

amplified or dampened or both. Moreover, different model structures might converge on

the same type of prediction, implying some kind of equifinality that is yet another hallmark
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of complexity. In talking of simulation, however, we must digress slightly and note that

microsimulation models of the kind developed originally by Orcutt et al. [14], and in an

urban context by the Leeds group [4] are not really in the tradition of complexity theory.

These are in the spirit of traditional models where simulation refers to the sampling of

events from known distributions and thence scaling up to entire populations for predictive

purposes.

Prediction involves generating unknown events and in traditional models, such events

usually pertain to the future. The ability to calibrate the model by fine-tuning the parameter

values in such a way as to replicate a known—present or past—situation provides some

confidence in using the model to predict the future. If the model is replicated in a different

but known situation and performs well in that it survives such a test, there is even greater

confidence in its ability to predict the future. Traditional models thus get the present right

and are then used to predict the future. In contrast, complex systems models can never

predict the present definitively and thus the focus changes on exploring a variety of

presents—where the actual present and its variants are just different versions of some

unknown future. Simulation enables such models to generate different outcomes, which

under some circumstances might appear to be different futures but really define a space of

different model outcomes. The way this space is generated is not simply through

systematic variations in parameter values, which is the time-honoured method of model

calibration in the case of traditional models, but through varying the model structures

within some limits, that is usually varying the rules that encode different processes into the

model, thus simulating different experiments within a kind of ‘virtual laboratory’.

This notion of exploring the space of all model outcomes and all model types is central

to the simulation of complex systems in that it has become the main way of model testing.

This is hardly model validation although it could be regarded as a way to check plausibility

and to test the robustness of model structures to changes in causal structures. This space of

model structures might be likened to a phase space which defines various model outcomes

in terms of model variables. In calibration, the phase space is defined by dimensions

associated with the model’s parameters and their range of values. In complex systems

modelling, the phase space is more qualitative in form, consisting of some mapping of

different causal structures onto various dimensions and then some measurement of the

model’s outcomes under these different structures. Sometimes the various rule sets which

mirror these causal structures are parameterised so that the model can be evaluated

quantitatively in terms of its performance against standard measures. This is a little like

setting up different experiments within the virtual laboratory where not only the variables

defining the experiments are varied but the experimental apparatus is modified from

experiment to experiment. In a sense, what constitutes the phase space depends upon how

rich the model is. In parsimonious, traditional models such as the spatial interaction type

we noted before, it is the space defined by the parameters and their values (associated with

distance functions); in complex systems models, it might consist of several different

spaces relating to different rules and structures, in a wider hierarchy of types. This

broadens the problem as it is possible to produce different types and levels of assumption

which are capable of being varied although are not capable of being parameterised. In fact,

it is even possible to begin to change the very object of study and its representation in this

way although in practice such experiments and explorations have rarely been developed.
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There are many examples we can review which illustrate these points and we will

examine some of these in more detail in the next sections. Suffice it to say that the most

instructive in the urban domain are those which allude to complexity and the generation of

emergence such as those based around ideas of cellular automata (CA). For example, CA

models are organised around processes of change in local neighbourhoods where action-

at-a-distance is espoused. Physical change in cities clearly depends on some local function

as is the case of the growth of any structure which must remain connected for its very

existence, but it is also clear that activities and people do not only locate according to local

actions restricted to a limited neighbourhood space. The rule sets which are used to

condition development are also rich and the prospect for testing such models directly is

problematic. For example, there are many neighbourhood configurations and many rules

sets and the space which is set up by this range of possibilities is enormous. It is not

possible to chart such a space and strategies for doing so are quite limited. This problem is

best seen in the basic theory of cellular automata as promulgated by Wolfram [20].

Although Wolfram [20] is able to exhaustively illustrate the possible system outcomes for

systems such as the two state (a cell is on or off, developed or not developed), three cell

regular neighbourhood in one-dimensional form where the all possible rules for switching

the cells on or off are enumerated, this breaks down for nine cell neighbourhoods in two

dimensions and all higher orders. Even with these limited possibilities, a bewildering

range of behaviour is possible and one is forced to conclude that most models that we are

working with are arbitrary in this respect, based on a loose consensus of what seems

plausible but not on any definitive evaluation of the appropriateness of model structures.

Until we are able to move beyond this, then all complex systems models will remain

contestable and inconclusive.

Finally it is worth noting that Epstein [5], amongst others, has argued that complex

systems modelling is generative by definition, more a strategy for generating possible

model structures and showing their consequences than a technique for developing fully-

fledged definitive models with strong predictive capability. It is arguable in any case

whether strong predictive capability is what is required in social systems (because it is

probably not attainable) but generative modelling can be equally problematic. In essence,

exploring different model types in the absence of data might be useful if equally, but very

different, plausible structures are possible, but this is not likely. More likely is the case

where there is some agreement about the main elements that can condition or determine

some sequence of events but where the operation of these elements is unknown and where

different sequences of these can generate very different consequences. In these situations,

there is really no alternative but better data and observations so that it is possible to

discriminate between these model types. In turn, this pushes the argument back towards

traditional modelling where calibration against unique data is the only option.
5. Modellers, the modelled, and users: purposes and roles

Our entire discussion so far has been without reference to any purpose for studying

complex systems or for building appropriate models thereof. Purpose is clearly important,

some would say central to what is done, for this conditions how we think about what is
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modelled and how the system of interest is to be modelled. In a sense, everything follows

from this. But in principle, every kind of model can be used for every purpose. Whether

this is so will depend on users, not on the models per se, although there is a tendency for

certain types of models to be used for certain groups of users. We can structure models

along many different continuums but one which is central to usage depends on the degree

to which their predictions, whether or not they pertain to the past or the future, are

believable. Many models may be useful even though their outputs might not be believable

in that the way they point up and focus events and issues serves a much more important

purpose than the generation of hard predictions. We will refer to this spectrum of

believability as one which begins with discursive models whose predictions can only be

treated in qualitative terms, through to models which generate hard numbers which are as

believable as any model might be. There is a strong sense in which complex systems

models are less believable than traditional models as we have implicitly argued in the

preceding discussion and although such models were rarely used in policy contexts in the

past, their use is changing. It is no longer possible to relegate complex systems models to

non-policy contexts. In fact as our contemporary view of the usefulness of science has

become more uncertain and confused, groups of users have emerged—enlightened one

might argue—who are comfortable with engaging in policy discussions using qualitative

forms of modelling, or models whose believability rests on their plausibility and not their

ability to replicate known situations.

We need to unpack this spectrum in much more detail but it is usually only fruitful with

particular applications in mind and these we will introduce briefly in the next section. A

particularly useful way of defusing the role of modelling is to consider the process of use

as one of ‘story telling’. The extent to which the story told is believable of course is always

at issue but no matter what the model says about the past or the future, it tells a story [9].

The story may not be very good, just as the model may not be good either but the notion

that models provide just another way of examining a situation is a good starting point in

any application. In fact, this is always the case anyway as the notion of learning about any

problem involves different and contrasting viewpoints, some of which may be dismissed,

others which will gain ground, and in this, quantitative systems model can have a central

role to play. In short, there is always an educational role for modelling and if this role is

construed as broadly as possible, then any model can, in principle, be used for any purpose.

Pedagogy is important in all contexts, for in solving problems directly or indirectly,

individually or in group discussion, models which polarise and focus on the key issues are

essential. Most models are designed to do this through their role in simplification.

Perhaps the most obvious use of complex systems models which generate unexpected

change is for learning, education, and in the broadest sense for entertainment. Models for

these purposes do not have to meet strict requirements of validation, unless the purpose is

to educate and learn about those specific types of models. More usually such models are

designed to stress specific issues, to highlight and to focus, rather than to predict for

purposes of problem solving and policy. In fact, models with emergent properties based on

evolutionary principles such as those which have been developed in artificial intelligence

and artificial life, are increasingly being adopted in game simulations, in web site design,

and in digital transactions processing. These kinds of system are strongly influenced by the

design of new methods for automated reasoning, rather than any concern for testing how
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such models might replicate the past or the present. However, it is now clear that the

considerable effort which has already gone into the development of computer games at all

levels from pure entertainment to formalised education, has already had a major impact on

simulation. There is evidence that what is state-of-the-art game design today is often

incorporated into the e-science of tomorrow. Computer graphics interfaces are a classic

example but so is algorithm design and perhaps more importantly, the ability of game

designers to think ‘out of the box’, reveals possibilities for scientific modelling that

ordinarily would not be attempted in normal science [11].

In one sense, thinking about complexity in the way we have been sketching is so new

in terms of a science of cities, that it is not surprising that the traditional norms of theory

development and hypothesis testing have been relegated to the background. For example,

most urban models based on analogies to cellular automata have been more concerned

with simply getting such models constructed and demonstrating that a rich dynamics can

be generated, rather than with any strict methods for their validation. This was perhaps

the case 30 years or more ago with Forrester’s [6] Urban Dynamics model which was

one of the first attempts to demonstrate the kind of digital richness that was possible with

modern computer systems. Although we clearly need much more explicit principles for

complex systems model development which broach directly the question of validation

from all perspectives, there is a parallel problem which has become significant. The

systems of interest—in our case cities—have themselves changed during this period

when digital science has become possible. The traditional attempts to classify and

describe cities in coherent terms, which have dominated urban science for the last 100

years or more, have increasingly come under scrutiny. The very systems that we have

been concerned with have become more complex as much through the development of

digital technologies as through changing life styles and economic conditions of the urban

population. In other words, there is now a strong debate about how we should classify

cities—how we should describe them—that takes us back to an earlier stage of science.

The difficulties in validating complex systems models may be as much to do with the fact

that the categories and classes, the objects and elements that we consider significant,

have also changed. These new models are as much for engendering the debate about

classification as for developing new robust theory which can be validated in the

traditional way.

Let it be clear that in this paper, we are not arguing at all that complex systems models

should be abandoned and that we should return to more traditional strategies of developing

parsimonious models. Nor are we arguing that parsimony is not relevant to complex

systems models for some of the best models are parsimonious in a way that illustrates the

principles of emergence and surprise. What we are calling for is a new strategy for dealing

with these models. We need to be explicit about the purpose for modelling and we need to

consider the extent to which a complex systems model contains hypotheses that should be

validated numerically against observable data. We need to be clear about the line between

explicit and implicit assumptions, about the role of prediction and exploration. In fact, a

tentative suggestion would be that all models—traditional or complex—should mix

calibration with exploration. In the last analysis, it is hard to see the value of a model that

does not touch reality at some point in which that reality can be replicated

‘unambiguously’. In this way, we consider exploration of model structures as well as
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more detailed methods for calibration to be essential in any process of model validation. It

is in those models—and there are currently many of them—where such validation is not

invoked whatsoever except perhaps at the most casual level, that we feel that a much more

explicit process of modelling should be invoked. We also feel that all modelling should be

paralleled with extensive debate, with the construction of alternative models—through

counter modelling as in the debate over national economic futures in some western

countries—and with alternative conceptions of data and observations. Where these

ambiguities remain, there should be extensive questioning of model structures and

purposes.

A contrasting focus for urban modelling is policy-making. Traditional models were

largely built from the middle of the last century with urban problems and policy responses

in mind. It is worth noting that this genre of models were often called ‘operational’ models

in contrast to theoretical models, although in urban studies there was a strong

correspondence between operationality and theory; operational modellers invariably

invoked the macro theory of the city that had been crudely fashioned in urban geography

and economics during the previous half century. In short, the notion that models for

policy-making must replicate the past, in some measure, was widely assumed. The idea

that systems theory and analysis which appeared so useful for military and logistical

problems at that time could be used for solving social problems also reinforced this

assumption. At the same time, this suggested that a good model for policy-making would

be one in which that same model could be used for managing and controlling the city

through some optimisation of its structure. The concept of a system and its control was

thus central to this consensus.

Furthermore, the idea that the systems of interest were stable in some way was also

essential to this quest. The concept that static models could be developed which

replicated the situation at a point in time—an equilibrium—and that these models could

be used to predict a future point in time which in turn would also be an equilibrium, was

basic to this philosophy. This, as we have seen, has become untenable, leading to an

unravelling of the basic idea that we are dealing with systems that are a simple enough to

describe and predict in this way. There has been a loss of faith in this style of modelling,

although the view still persists that, for models to be operationally useful, they should

replicate the past and the present in a sufficiently robust way to give confidence in their

use for prediction. Models which cannot be validated are thus no different from

qualitative reasoning, from intuition, or even dictat which were the usual schemes used

to develop policy prior to the computer era.

There is a sense in some policy-making that models which cannot predict the present

and are unlikely to be able to predict any kind of future might still be useful. This forces the

argument back to education and learning, to ‘modelling as story telling’, and to the use of

models to engender and structure discussion and debate. There is a limit to how far this

perspective can be justified. Much depends upon the specifics of the situation where such

models are found useful, on the nature of the problem and the relative values and

disposition of the users and decision-makers. In these cases, then the use of models to

generate ‘what if?’ scenarios is the main basis for application where such scenarios define

bounds to the solution space within which possibilities for the future might be discussed

and debated.
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Before we conclude, we should note two related issues. First models are increasingly

being used to communicate other kinds of idea/as vehicles on which other less

controversial issues might be conveyed. The use of models to help in visualisation is a

classic example where visualisation often requires a more specific focus which only

predictions from models can enable. Scenario building is the classic case in point, as are all

kinds of urban design which require visualisation. Our second digression is no less

significant. The lines between the modeller, the modelled, and the user are increasingly

blurred. This is a question of cognition in that the kinds of actions and interactions which

form the substance of the new generation of complex systems models mirror processes of

decision which in turn are those that are employed by model users in policy-making. This

is no more or less than the idea that the user is part of the system to be modelled and is

often no different in behaviour from the rest of the system that is being modelled. In less

charitable terms, complex problems have been described as those in which the solution is

part of the problem—the plan or planner is part of the problem—and this is an issue that is

taxing us in how we might represent decision processes in the city whilst using those same

models to engage in similar decision-making.
6. The limits to prediction

As we have explained, the time-honoured principle used in testing theory against data

involves specifying causal structures or chains in which independent variables are used to

explain an equivalent number of dependent variables. This occurs in such a way that the

predictions are useful and interesting, thus adding to our knowledge of how the world

works. This is the principle of parsimony, or requisite variety. Invariably theories contain

more than can be tested in that there are basic, often implicit, assumptions which might be

testable against data but are not, while many theories imply relationships which cannot be

tested against data for observational reasons or simply for lack of data. Such theories may

well be plausible but they cannot be regarded as parsimonious in the sense we have

portrayed here. However, there remains a basic problem with theories and models that

meet our criterion of parsimony. We may well be able to rigorously test a theory by setting

up a model which can be uniquely calibrated, hence testable against data but the causal

explanation implied by the theory may not be unique in itself. For example, by changing

the independent data driving the explanation, we may be able to build equally good models

which predict the same outputs but we are still left with choosing between one model and

the other. One might argue that if there are equally good reasons for choosing either set of

independent data, then we are still unable to choose. One can push the argument back and

say that if there are two or more different sets of independent data which explain the same

phenomena equally well, then there must be correlation between these sets of data and thus

they are not in and of themselves independent from one another. This, however, may not

be the case or at least we may not be able to decide that it is.

A good example relates to city growth. It is often argued that cities grow around their

central cores and that more wealthy income groups can afford to commute longer distances

to work in these cores, thus exercising their preference for more space at the edge of

the city. This is a crude paraphrasing of the way urban economic theory explains
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the organization of land use around the core of the industrial city. In short, land use

organization is based on the trade-off between travel cost, rent, and space required which

are a function of income. However, an equally good explanation of urban growth is that

cities have grown outwards around their cores because this is the only way they could do

and still function with their work at the centre. As technology has progressed during this

period, densities of development get lower and the size of sites get larger as the city grows

in that we can generally afford more. Higher income groups are thus forced to live in these

more distant areas even if they do not want to due to the fact that there is no place else they

can reside and consume the space even if they could afford it. Of course, one might argue

that these two competing explanations might be merged in some way but it is entirely

possible that each may explain actual development in the monocentric city to the same

(numerically) high level.

Thus parsimonious models are not all that they might seem and there is a strong case for

building models which contain plausible mechanisms even if we cannot test these

mechanisms. The problem is that short of statistical or numerical criteria, good rules for

choosing models based on a combination of discursive and reflective analysis as well as

standard quantitative evidence are not well-developed. In the case of CA-like models,

there are so many assumptions about the representation of space and the nature of the

transition rules that are used to determine development that it is not possible to definitively

use such a model to make predictions that we can act upon. In such instances, we are

always forced back to the argument that such models are pedagogic, that they are

demonstrations of what is possible, and in the last analysis, provide vehicles for

discussion, for counter modelling, and for argumentative discourse. This may, of course,

be said for all science and its application to human affairs.

There are two issues that we should draw together which further illustrate the limits to

prediction posed by models of complex systems. The first is the issue of emergence which

strongly relates to scale and space in urban systems in that models of local action can be

demonstrated to give rise to global order. These we would submit are invariably pedagogic

in that once understood, then the phenomena of global order explicable in terms of local

action is no longer surprising or mysterious. What is more to the point is that models that

can give rise to specific objects or places that emerge from local and other actions are still

worth exploring. For example, models that generate growth poles where none existed

before are important in that although we might know the generic reasons for such growth,

the precise conditions for their emergence may not be known. Such models can be used to

explore these conditions, again in a pedagogic way.

This leads to the second issue which limits our predictive powers. Most of the models

that we are alluding to here contain mechanisms which involve choosing the drivers of

growth using some sort of random processes. For example, choosing cells to be developed

is often a process of determining the probability that they might be developed and then

choosing actual allocations to these cells, based on these values using Monte Carlo

methods. It is entirely possible to structure these types of model in a deterministic frame

but most would agree that the certainty implied in this is problematic. If the usual course

involving random simulation is adopted, then there is the problem of knowing what actual

simulations mean when they can vary from run to run. The notion of taking some central

limiting simulation is problematic too when decisions within these structures are
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invariably determined by applying discrete thresh-holding. There are important issues too

in knowing how to deal with predictions that emanate from such models. One feature that

we have not addressed here is that because all models are now digital and can be

communicated across networks, it is possible to set up effective interfaces to their use in

many different situations. Such digital dissemination is now possible and this we urgently

need ways of illustrating how these models work so that we can assemble teams to

improve such simulations and to learn about their limits in the widest possible domains.

Where we are dealing with systems that are intrinsically uncertain and infinitely complex,

then the only way forward is to learn the limits to such systems and in this way, to fashion

our models to account for such limits.
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