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‘Traditional’ urban simulation models have a number of weaknesses that limit 
their suitability as planning support tools. However, a ‘new wave’ of models is 
currently under development in academic circles, and it is beginning to find 
application in practical contexts. Based around two simulation techniques that 
have origins in artificial life and artificial intelligence—cellular automata and 
multi-agent systems—it offers great potential for planning support tools, with the 
capacity to simulate individual households and units of the built environment in a 
truly dynamic, realistic, and highly flexible manner. This chapter presents an 
overview of ‘traditional’ land-use and transport models as planning support tools 
and examines their fragilities before reviewing a ‘new wave’ of urban models. 
Additionally, it considers the challenges facing the use of new techniques in 
operational models. 

1 Introduction 

In the early 1970s, the field of urban simulation was all but written-off as a failure. 
Douglas Lee’s article,  ‘Requiem for large-scale models’, published in the Journal 
of the American Institute of Planners (Lee 1973), served as a harbinger of doom 
for a generation of urban simulation models applied in planning contexts. (If you 
really want to make a name for yourself in academic circles, publish a paper 
declaring the demise of your discipline!) Lee provided a broad justification for 
retiring large-scale urban models as planning support systems (PSS) and many of 
his arguments were appropriate at the time. To some extent, the challenges posed 
in his article were muted by subsequent developments in computer hardware, 
computer software, dataware, new simulation techniques, and important 
breakthroughs in our understanding of cities. But several important weaknesses 
remained with urban models used as planning support tools, and without much in 
the way of a viable empirical alternative for supporting decisions in cities, urban 



planning and management agencies continued to use those technologies to assist 
them in their duties despite the flaws associated with the models. 

In recent years, however, a confluence of several related and distinct 
developments across disciplinary boundaries has provided the foundation for a 
new generation of urban simulation models with the capacity to revolutionize our 
capabilities for simulating cities. Models have been developed in academic circles 
that enable users to simulate the complex dynamics of urban systems at the level 
of individual households and buildings, in some cases approximating real time 
representations. Moreover, these simulations have begun to migrate from the 
confines of the laboratory and into real world applications. 

This chapter presents an overview of ‘traditional’ urban simulation models and 
discusses their weaknesses before reviewing a ‘new wave’ of urban models. 
Additionally, it considers the challenges facing the use of new techniques—
cellular automata and multi-agent systems—as operational planning support tools. 

2 ‘Traditional’ urban models 

The conceptual framework for a ‘traditional’ urban model is outlined in figure 1. 
The figure illustrates the general land-use and transport model that was (and in 
many cases still is) used as a planning support tool by city planning and 
management agencies. Generally, these models are comprised of several sub-
components. Cities are usually simulated from two distinct standpoints: land-use 
(with sub-models for land supply, land demand, and mechanisms for reconciling 
the two) and transport (with sub-models for potential demand and trip generation, 
trip distribution, modal split, and trip assignment). In recognition of the fact that 
several relationships exist between land-use and transport in the real world, the 
simulations of land-use and transport are commonly linked via some connecting 
mechanisms. ‘Traditional’ simulations are most commonly devised as 
combinations of spatial interaction models, spatial (or discrete) choice models, and 
simple functional statements.  

Spatial interaction models (also known as gravity models) allow us to predict the 
size and direction of flows through urban spaces using independent variables that 
measure some structural properties of the area being modeled. The models are 
commonly used to assign activities to locations in land-use simulations and to 
model trip generation and assign trips to routes in transport simulations. For 
example, the geography of journey-to-work flows might be modeled using 
structural variables such as the distribution of workers, the distribution of 
employment, and the costs of traveling to work. Spatial interaction models are 
formulated based on Newton’s laws concerning gravitational attraction. Newton 



 
 

Figure 1. The structure of a ‘traditional’ land-use and transport model. 



asserted that the force of attraction between two bodies ( ijF ) is the product of 

their masses ( im , jm ) divided by the square of the distance between them ( 2
ijd ): 
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Where G  is a constant: gravity.  In urban models this translates to:  
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Put simply, the above equation represents flows as the result of push and pull 
factors. Specifically, the flow between two places is considered to be a function of 
the ability of an origin ( i ) (e.g., a residential neighborhood) to generate flows 
(e.g., trips), the capacity of a destination ( j ) to attract these flows (e.g., through 

employment), the distance over which the flow must pass ( ijd ), and some 

weighting mechanism that discourages flows over long distances: a distance-decay 
effect (α ). In the above equation, k  is a scaling constant; it needs to be included 
because the independent variables iW  and jW  are not measured in units of flow 

(Thomas and Huggett 1980). 

Significant variations on this basic description of the gravity model include the 
production-constrained model, the attraction-constrained model, the production-
attraction-constrained model, and the entropy-maximizing model (Torrens 2000b). 
The motivation behind applying these enhancements to the basic framework is to 
provide some form of balancing or accounting in the predictions that the model 
makes. To put it another way, constraints straightjacket a model into compliance 
with known data.  

Spatial choice models represent a behavioral approach to urban simulation. They 
are also used to simulate elements of the scheme outlined in figure 1. They are 
commonly applied to the simulation of location decisions on the land-use side and 
to modal choice in transport simulation. In some instances, the technique is also 
applied to simulating development decisions on the supply-side. Spatial choice 
models use various assumptions to simulate decision-making or spatial choice in 
urban contexts, commonly on an aggregate level. First, decision-making is 
assumed to take place from a discrete set of choice alternatives. Second, choices 



are assumed to be made in such a way that the most utility, or satisfaction, is 
yielded. In an urban sense this might represent a household making a location 
decision amongst a set of given locations that a city has to offer so that a 
combination of utilities is maximized (e.g., cost, amenities, quality of the school 
system, etc.). Third, it is assumed that choices are made in a probabilistic 
fashion—decision-makers have a likelihood of making certain choices. Fourth, it 
is assumed that the utility of a decision can be divided into two components: one 
measuring ‘strict utility’: the fixed and measurable attributes of utility, and the 
other dealing with ‘stochastic utility’: an error or disturbance term that reflects the 
unobserved attributes of a given decision (De la Barra 1989). 

There are several variants on this general theme. The most general, the discrete 
choice model, is expressed mathematically as: 
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Where ikP  is the probability of an individual ( i ) choosing an option k  from a 

given choice set. ikV  and ijV  are the ‘strict utility’ components of an individual’s 

( i )  choices of k  and j  respectively and ikE  and ijE  are the stochastic 

elements of the utility calculation for choices k  and j . Additional elements may 
be added to this formula to weight the probability calculation, e.g., variables 
representing the socio-economic characteristics of a decision-maker. 

The logit model is a variant of this. It is devised by making assumptions regarding 
the random component of utility ( ijE ), e.g., assuming that individuals evaluate 

every available alternative to their decision before settling on an optimal one (the 
non-hierarchical logit model) or that decision-makers make choices sequentially, 
rather than wading through every available option at once (the nested or 
hierarchical logit model). Space is introduced into these models by simply adding 
it as an additional choice variable. Mathematically, the model is expressed as: 
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Where isP  is the probability that a decision-maker i will select a particular spatial 

cluster s  to focus its decision in; ∑
∈

n

sk
ikV )exp(  is termed an ‘inclusive value’ and 

describes the attractiveness of a cluster as a function of the individual alternatives 
available within that cluster (Fotheringham and O'Kelly 1989); and σ  represents 
the extent to which decision-makers process their information hierarchically, and 
ranges in value from zero to one, with 1=σ  denoting decision-makers who do 
not process their information hierarchically at all. 

Once a decision-maker has selected a given spatial cluster, s , to narrow her 
choice set, all that remains is for an option (or alternative), k , to be settled upon. 
The likelihood of a decision-maker selecting a particular alternative k , within the 
selected spatial cluster s , is then calculated as: 
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In addition, the probability of a decision-maker selecting k  from the set of all 
alternatives is: 

sikisik PPP ∈=  (vi) 

Between them, spatial interaction and spatial choice models comprise the bulk of 
material underpinning land-use and transport models as planning support tools. In 
his 1994 review of operational modeling, Wegener identified twelve models that 
he considered to be state-of-the-art. Of those, ten were formulated predominantly 
as discrete choice models (Wegener 1994). More recently, a similar review by the 
U.S. Environmental Protection Agency (U.S. Environmental Protection Agency 
2000) identified 22 operational models and, once again, discrete choice models 
featured most prominently (figure 2). Despite their popularity, however, these 
techniques have several weaknesses. 
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Figure 2. Common simulation techniques underpinning operational land-use and 
transport models. (Source: data from U.S. EPA 2000, Appendix A.) 

 

 



2.1 Criticisms of the traditional approach 

As mentioned in the introduction, ‘traditional’ approaches to urban simulation 
have come under heavy criticism over the years. Lee (1973) provided one of the 
most well known articles documenting their failures; another influential one was 
written by Sayer (1979). Several of the complaints forwarded in those papers were 
resolved over time, simply through innovation in computer hardware, software, 
data capture techniques, and the development of new methodologies (see Batty 
1994; Harris 1994; Klosterman 1994). While the models may be regarded as 
reasonably successful for providing a very general simulation framework for 
planning support, they have some important weaknesses and any success achieved 
with their application is tempered by the lack of an available alternative. The 
assumption that flows of people in an urban system—whether for travel or 
migration—take place in manners akin to those described by Newton is a 
simplification. Furthermore, spatial interaction models convey only one form of 
spatial interaction and not everything in a city passes through urban space as a 
flow. Spatial choice models offered somewhat of an improvement over gravity 
models by introducing decision-making, but retained weaknesses. It is widely 
understood that the distinctions between choice categories may often be fuzzy 
rather than discrete; spatial choice models do not commonly accommodate this. In 
addition, the treatment of space as a simple choice variable in a utility calculation 
is severely limiting. Several other, more generic weaknesses of ‘traditional’ 
models can be identified: a poor treatment of dynamics, weak attention to detail, 
shortcomings in usability, and a lack of realism. 

Urban systems are highly dynamic. Models should be able to capture that 
property, but dynamics are often poorly represented in urban simulations. Cross-
sectional data are commonly used as a proxy for dynamics. These data are 
collected for a single period in time: a snapshot. Other models are developed with 
longitudinal data, offering a series of snapshots, often separated by long periods of 
time with little information about the intervening period, e.g., data from the 
Census, which is commonly reported on a ten-year basis. While longitudinal data 
are much richer in the information they convey, they still constitute a weak proxy 
for dynamics—a lot can happen in a city in ten years! Consider the chart 
represented in figure 2. In this instance, were we to use two snapshots as the basis 
for explaining dynamics in a model of the stock market—say, September 1998 to 
September 2001—we would be looking to explain a flat market: the values at the 
start and end of the time period are essentially identical at around $1500. The 
processes that yield market stability are much different from those that generate 
the sort of volatility that a more fine-scaled examination of the period would 
reveal. Any results derived from a model designed to explain stability would be 
wholly inappropriate in this case. The same may well be true for urban models 
calibrated with longitudinal data.  



 
Figure 3. The NASDAQ composite index for a five-year period.  

(Copyright 2001 Bloomberg LP. Reprinted with permission. All Rights reserved.) 

 

 

‘Traditional’ models are often weak in handling detail. For the most part, this is 
due to a lack of data available at fine-scale spatial resolutions. ‘Traditional’ 
models generally adopt the Traffic Analysis Zone (TAZ) as a minimum level of 
spatial resolution. TAZs are aggregate levels of geography: a medium-size city 
would be divided into just a few hundred TAZs, for example. From this level of 
geography, one can only infer information at the level of individuals or entity-
level geographies of urban space and to do so invokes issues of ecological fallacy 
and modifiable areal unit problems (Openshaw 1983). At the heart of the 
Modifiable Areal Unit Problem is the issue that there are almost an infinite 
number of spatial objects that can be defined and modified for any given area of 
inquiry but few, if any, modifiable entities. Census data, for example, are collected 
in many cases for spatially non-modifiable entities (e.g., people, households) and 
are reported across spatially modifiable units (e.g., counties, ZIP code 
geographies, census tracts and block groups). Ecological fallacy is a closely 
related problem. An ecological fallacy occurs when it is inferred that results based 
on aggregate data can be applied to the individuals who form the aggregated 
group. ‘Traditional’ models also represent discrete socioeconomic groupings in a 



city in a relatively aggregated manner. Household and employment categories are 
often divided into a handful of classifications. Microsimulation models have gone 
some way toward disaggregating the groupings represented in simulations, but 
they are still a long way from an accurate representation of the variety and 
diversity of people and activities in an urban system. This lack of detail can, in 
some cases, be regarded as a serious limitation of ‘traditional’ models because 
many of the processes that take place in urban systems operate at finer resolutions.  

It is vitally important that urban models intended for use as PSS are developed 
with the end-user in mind. In particular, models should be developed in such a 
way that makes them easier for decision-makers and the public to digest. Usability 
has long been a concern in other areas of applied science (e.g., human-computer 
interaction in computing), but has often been weakly addressed in urban 
simulation. In many cases, users perceive simulations as ‘black boxes’: inputs are 
fed into the model and the results of calculations and operations are output, but the 
inner workings of the model may remain a mystery. This acts as a barrier to the 
efficient and appropriate use of models as decision support systems and impairs 
the ability of models to serve as exploratory tools. The strengthening of linkages 
between models and Geographic Information Systems (GIS) has helped somewhat 
in the area of usability, particularly with the communication and interpretation of 
results, but the need for an interactive environment for directly manipulating 
models still remains largely unrealized in operational contexts.  

Finally, urban models suffer from a lack of realism. Bluntly stated, cities don’t 
really work the way that ‘traditional’ models would have us believe they do. There 
is a disparity between models and reality on a behavioral level. In particular, 
‘traditional’ models adopt a reductionist view of urban systems. For the most part, 
assumptions are made that portray cities as operating from the top down. This 
implies dissecting cities into constituent local components from aggregate 
conditions in order to understand them. In many cases, this is appropriate (when 
studying planning constraints, large-scale infrastructure improvements, etc.), 
however, in other instances it is inappropriate (when studying housing demand, 
commuting, etc.). Many components of urban systems do not work in a top-down 
manner; on the contrary, aggregate conditions emerge from the bottom-up, from 
the interaction of large numbers of elements and entities at a local scale.  

 

3 A ‘new wave’ of urban models 

In recent decades, social scientists have begun to work with a new class of 
simulation techniques that we might term ‘complexity models’, ‘geocomputation 
models’, or simply ‘geosimulation models’. This ‘new wave’ of simulation opens 



up exciting possibilities for simulating systems of all descriptions, and in 
particular the simulation of behavioral processes and the structures that they 
generate. While the use of computers and computation in urban simulation is by 
no means new, the geosimulation approach—modeling systems at the scale of 
individuals and entity level units of the built environment—is particularly 
innovative from an urban simulation standpoint and offers some significant 
advantages for the use of urban simulation as a planning support tool.  

A number of key developments across disciplines have supported the introduction 
of these new techniques. Within the geographical sciences, geosimulation models 
have been supported by a flood of detailed geographic information that has 
become easily attainable in recent years. These data have been made available in a 
variety of media and covering phenomena that would not have been possible a 
relatively short time ago, e.g., multi-spectral and fine-scale resolution remotely 
sensed data on land-use and land cover change in urban areas.  The provision of 
these data has been directly responsible for addressing some of the weaknesses we 
have just explored: a lack of detail in ‘traditional’ models, for example. Also, it 
has had indirect impacts on urban simulation by supplying new insights into how 
urban systems operate, thereby allowing us to develop better-informed 
simulations. Furthermore, GIS have been developed to store, manipulate, and 
display spatial data. There is now a rich tradition of use of these systems in PSS 
contexts. 

Object-oriented (OO) programming languages such as Java and C++ have also 
contributed to the development of geosimulation-style models. OO approaches 
offer obvious advantages for the treatment of discrete entities of urban systems, 
e.g., land parcels, buildings, administrative zones, households, and individuals. 
The basic unit in OO programming is the object. Objects are associated with data 
and their behavior is mediated through methods (conditional statements and 
calculations that determine how objects should interact and evolve over the 
lifetime of a program run). The conceptualization of pieces of inanimate code as 
objects with related data and methods mimics the way that we think of real world 
objects ourselves: as discrete units with associated attributes and behaviors. This 
has several benefits for making models more flexible to build, as well as making 
them easier to convey and understand. 

Ideas stemming from complexity studies have also been instrumental in the 
development of new generations of urban models. The main idea in complexity is 
that of emergence. In emergent systems, a small number of rules or laws, applied 
at a local level and among many interacting entities are capable of generating 
surprising complexity and often ordered patterns in aggregate form. Additionally, 
these systems are dynamic and change over time without the direction of a 
centralized executive. Complex patterns often manifest themselves in such a way 
that the actions of the parts do not simply sum to the activity of the whole. 
Essentially, this means that there is more going on in the dynamics of the system 



than simply aggregating little pieces into larger units. Examples of emergent 
systems abound. Stock markets are a good example: markets such as the New 
York Stock Exchange (NYSE) are comprised of millions of traders buying and 
selling in a bid to maximize their own individual profits. In the eighteenth century, 
the Scottish economist Adam Smith postulated the idea of an “invisible hand” that 
set the level of equilibrium between supply and demand in the market place. 
Individual investors in stock markets act without any centralized control, yet their 
activities often lead to aggregate outcomes that are relatively efficient, as efficient 
as if they were controlled. Many urban systems are also complex in this sense. 
From the local-scale interactive behavior (commuting, moving) of many 
individual objects (vehicles, people), structured and ordered patterns may emerge 
in the aggregate, such as peak-hour traffic congestion (Nagel, Rasmussen et al. 
1996) and the large-scale spatial clustering of socioeconomic groups by residence 
(Benenson 1998). In urban economics, large-scale economies of agglomeration 
and disagglomeration have long been understood to operate from local-scale 
interactive dynamics (Krugman 1996). In addition, cities exhibit several of the 
signature characteristics of complexity, including phase transitions, fractal 
dimensionality and self-similarity across scales, self-organization, and emergence 
(Batty and Longley 1994; Allen 1997; Portugali 2000).  

Complexity studies have shed new light on our thoughts regarding the inner 
workings of cities and have had profound impacts on our approach to urban 
simulation. They suggest a detailed, decentralized, and dynamic view of urban 
systems. They also offer a framework for considering answers to questions of the 
form, ‘How do cities work?’ in terms of the myriad and evolving interactions of 
individuals and the urban spaces that they inhabit. This is a much more generative 
approach than the reductionist view that is traditionally adopted in urban studies. 
Simply dissecting cities may not provide all the answers; on the contrary, there 
may be a need to build them up from the bottom and in doing so, we may learn a 
lot about how they work. As will now be explored, this may also have some direct 
analogies in the way we simulate cities.  

3.1 The geosimulation approach 

The geosimulation approach offers a unique perspective that traditional simulation 
has commonly lacked: a view of urban phenomena and the spatial processes that 
shape them as a result of the collective dynamics of multiple urban animate and 
inanimate objects. Geosimulation can be considered as an extension of traditional 
urban modeling in several ways. 

First, and as we have already seen, the intellectual roots of geosimulation differs 
from that of previous generations of models. Ideas from economics, physics, and 
engineering are still adapted to spatial contexts in urban models, but the range of 
inspiration is now much wider. Geosimulation models borrow from developments 



in several fields that were not widely considered, particularly computer science 
(artificial life and artificial intelligence) and natural science. 

Second, the geosimulation approach differs in its depiction of spatial units. While 
traditional urban models have focused on aggregate partitions of urban space—
essentially modifiable spatial units—geosimulation works with discrete and 
spatially non-modifiable individual objects, such as houses, lots, householders, 
and landowners.  

The third feature relates to the portrayal of spatial interactions. As we saw, 
‘traditional’ models have focused on describing flows of matter and information 
between aggregate spatial units. Geosimulation models contrast by concentrating 
on the interactive behavior of elementary geographic objects, and that interaction 
may take many forms: flows, distance-decay, diffusion, dispersal, action-at-a-
distance, centripetal and centrifugal activity, linear and non-linear relationships, 
etc. If interactions are modeled at higher-level units of urban space, they are 
simulated in geosimulation as the outcomes of collective interactions at micro-
scales. The choice sets used in spatial choice models also appear in geosimulation 
models, but in this case those rules are mediated spatially in a variety of ways, 
above and beyond the use of a simple choice set to represent space and geography. 

The fourth characteristic is concerned with the treatment of time. As we saw, 
traditional models are essentially static. Geosimulation models, by comparison, 
are very dynamic and in some cases, they can approximate real time interaction 
within a simulation environment.  

Finally, ‘traditional’ and geosimulation models differ in their attitude to urban 
simulation. Geosimulation could be considered as a reconsideration of the goals of 
simulation, with a new emphasis on building scenario-generating games—tools to 
think with—rather than predictive models. Various simulation scenarios can be 
designed, each based on different suggestions regarding factors of urban 
dynamics, and played through to likely conclusions before being tried in the real 
world. The intuitive and transparent nature of the models should facilitate 
discussion by model users, rather than providing prescriptive remedies based on 
simplified assumptions. This has obvious advantages for the application of 
simulation tools to PSS. 

The two main techniques used to build geosimulation models for application in 
urban studies are cellular automata (CA) and multi-agent systems (MAS). Both 
CA and MAS share the traits of geosimulation models discussed above. In terms 
of urban simulation, CA are perhaps best used to represent the dispersal of activity 
and characteristics between discrete spatial units of urban infrastructure and land. 
MAS may be more suited to simulating urban population as collectives of 
individuals with associated behaviors and traits and the capacity for spatial 
mobility and communication.  

 



 

 

 

Figure 4. The characteristics of a basic cellular automata. 



3.2 Cellular automata 

Cellular automata were originally pioneered in computing (Sipper 1997) but have 
since seen uses in a wide variety of fields, including urban studies (see Batty, 
Couclelis and Eichen 1997; Torrens 2000a). A cellular automaton is a finite state 
machine (an engine of sorts) that exists in some form of tessellated cell-space 
(figure 3). The term automaton refers to a self-operating machine, but one of a 
very distinct nature: “An automaton is a machine that processes information, 
proceeding logically, inexorably performing its next action after applying data 
received from outside itself in light of instructions programmed within itself.” 
(Levy 1992, p.15) Additionally, CA are parallel automata: more than one 
automaton is active at any given instance. CA are comprised of five components. 
The lattice of CA is the space in which they exist. This might be considered 
equivalent in an urban context to a city, an environment, a landscape, or a 
territory. The lattice can also be generalized to represent urban spatial structures, 
networks of accessibility, the physical structure of the city, etc. CA cells represent 
the discrete confines of individual automata. They are the elemental building 
blocks of a CA, just like individual land parcels or buildings in a city. CA cells 
are, at any time, in a particular state. The cell state offers a flexible framework for 
encoding attributes of a city into an urban simulation model, e.g., land-use, 
density, land cover, etc. Neighborhoods are the localized regions of a CA lattice 
(collections of cells), from which automata draw input. Neighborhoods in an 
urban CA might represent spheres of influence or activity, e.g., market catchment 
areas, commuting watersheds, etc. The real driving force behind CA are transition 
rules. These are simply a set of conditional statements that specify the behavior of 
cells as CA evolve over time. The future conditions of cells are decided based on a 
set of fixed rules that are evaluated on input from neighborhoods. CA rules can be 
devised to mirror how phenomena in real cities operate. Additionally, we might 
discern another component—time—that is generally discrete and proceeds in 
iterative steps. In CA, the dynamic processes of change are represented through 
local actions (governed by transition rules) that are applied in the immediate 
proximity of the various objects that comprise the system of interest (Batty, Xie et 
al. 1999b). Because CA are dispersive in their action through space, this can 
generate structures on a macro-scale. 

CA offer a range of advantages for urban simulation and in several ways they 
remedy particular deficiencies of ‘traditional’ models. Whereas space is 
represented in a very simplistic manner in ‘traditional’ models (commonly as a 
single variable or a distance calculation), CA provide for a much richer 
representation. Urban systems can be represented at a variety of spatial scales 
simultaneously, directional elements can be introduced to mimic the way that 
cities develop in sectors or wedges, different distance functions can be added to 
characterize distance-decay, and neighborhoods can be set up hierarchically to 



represent action-at-a-distance. Additionally, the structure of space can be modified 
in a variety of ways from irregular to regular representations.  

CA transition rules have been devised that mimic those of spatial interaction and 
spatial choice models. However, CA are highly flexible and transition rules can be 
devised to represent just about any process or variable you can imagine: 
geographical inertia, hierarchy, accessibility, suitability, potential for 
development, utility functions, constraints, exogenous growth, feedback effects, 
deterministic and probabilistic processes, etc. Importantly, they offer the potential 
for weaving theory and planners’ knowledge and expertise directly into the cogs 
of model dynamics. The framework for CA (and for MAS) is not as constraining 
as those of ‘traditional’ models might be considered to be. 

Additionally, CA can be designed with attention to detail. They are inherently 
decentralized. They are dynamic, as well as being intuitively useful and 
behaviorally realistic. Additionally, they have a “natural affinity” with raster data 
and GIS (Couclelis 1997), as well as with OO programming. CA also provide a 
mechanism for linking micro- and macro-approaches and for connecting patterns 
with the processes that produce them.   

CA have been used quite widely in urban studies in recent years. The most 
common applications of the models are to land development, urban growth, and 
land-use transition. In terms of land development, CA have been used to 
investigate the role of density constraints in development and the spatial 
distribution of growth activity (Batty, Xie et al. 1999b). Other models have 
characterized the development process as a profit calculation, mediated through 
space with the use of decision-making regimes from game theory (Wu and 
Webster 1998). CA have also been used to simulate development as a function of 
demand, supply, and potential (Batty 1998). 

CA models have also been applied to simulating urban growth processes, as well 
as specific forms of urban growth such as polycentricity (Wu 1998). CA have 
been used to represent the evolution of urban form through growth cycles (Batty, 
Xie et al. 1999b). Growth has also been modeled proceeding from historically 
identified ‘seed’ cells, using self-modifying transition rules that mimic the 
adaptability of cities over time (Clarke, Hoppen et al. 1997), and using predator-
prey algorithms (Batty, Xie et al. 1999a). White & Engelen (2000) have developed 
CA models that rely on exogenously defined growth engines that reflect the 
position of cities in larger economic regions and economies. 

CA have been quite widely applied to simulating land-use transition. Land-use 
dynamics have been modeled as a hierarchical process (White and Engelen 1997) 
and as a function of the rent-bidding power of individual sites and the externalities 
that they might produce (Webster, Wu et al. 1998). The role of inertia in land-use 
transition has also been widely investigated, as has the role of constraints such as 



accessibility (White 1998), density, and topological factors (Clarke, Hoppen et al. 
1997). 

3.3 Multi-agent systems 

While CA are most suitable, in urban simulation contexts, for representing 
infrastructure and land, MAS are better used to model population dynamics. MAS 
also have origins in computer science, although their development post-dates that 
of CA by some years. Most commonly, MAS are used in computing as artificial 
intelligence systems or artificial life forms (Kurzweil 1990; Levy 1992). 
Additionally, there are ‘species’ of agents that serve as network bots, web 
crawlers, and spiders (Leonard 1997). Network agents are used to navigate 
computer information networks, to ‘mine’ data, retrieve it, and return it to human 
users. There is also a tradition of using software agents to explore entomological 
behavior (Bonabeau, Dorigo et al. 1999) and the actions of agents in economic 
systems and markets (Luna and Stefansson 2000). 

Agents are quite similar to automata in their formulation but have less well-
defined characteristics. They constitute pieces of software code with certain 
attributes (states) and behaviors (rules) (see Ferber, 1999 for a general 
introduction to intelligent software agents). They differ from CA mainly in their 
spatial mobility: agents can be designed to navigate (virtual) spaces with 
movement patterns that mimic those of humans, while CA are only capable of 
exchanging data spatially within the confines of their neighborhoods. In some 
senses, agents could be considered as mobile CA. Their states (e.g., occupation, 
income, age, etc.) describe their characteristics in the same way as in CA and they 
exist in some space (although this need not necessarily be a cellular space). 
Agents may have a neighborhood of influence in which they operate, but the 
criteria for defining that neighborhood are much more flexible than those applying 
to CA. Like CA, MAS are driven by transition rules that govern the behavior of 
the agents. These rules may be characterized as ‘goals’ that agents seek to satisfy 
(e.g., minimizing travel distance) or even ‘preferences’ that agents may possess 
(e.g., ‘likes’ and ‘dislikes’ for certain locations in space), or may be derived from 
their state variables. 

MAS are excellent tools for representing mobile entities in urban environments, 
e.g., people, households, vehicles, etc. However, their application to urban studies 
has not been as widespread as that of CA, although there seems to be no particular 
reason why this should be the case. MAS hold all of the advantages of CA, but 
with the additional capacity for representing a wider array of spatial processes. 
Like CA, MAS are easily programmed in OO environments, as well as offering 
advantages in terms of detail, flexibility, dynamics, usability, and behavioral 
realism. They have been used in urban contexts to simulate pedestrian movement 
in dense urban environments (Batty 2001). Here, agents are designed 



‘choreographically’ with the capacity for realistic movement through space. 
Additionally, agents may be equipped with realistic behaviors (such as shopping 
habits) derived from life-like socioeconomic profiles. Another widespread 
application of MAS is in simulating residential location patterns. Whereas with 
spatial interaction and spatial choice models, residential location processes were 
modeled as simple flows between destinations or as aggregate-level decisions, 
MAS can model the process in a more life-like manner. Individual households can 
be represented with realistic profiles and preferences, then sent out to interact in 
virtual housing markets (Benenson 1999). In one example, residential location is 
modeled using both CA and MAS in a hybrid fashion (Torrens 2001a). Home-
buying and home-owning agents negotiate the sale of properties through the help 
of MAS, while neighborhood effects that influence the attractiveness of certain 
areas of the city are simulated using a CA.  

4 Epilog 

Although CA and MAS models are developed, for the most part, in academic 
contexts, they are beginning to find their way into planning support systems. The 
TRANSIMS model—a CA simulation of traffic dynamics, capable of simulating 
interactions among hundreds of thousands of vehicles in real time—is one of the 
most ambitious urban simulation projects ever developed (Nagel, Beckman et al. 
1999). That model is scheduled for practical application in a range of cities in the 
United States. The models developed by White, Engelen, and colleagues have also 
been used in practical contexts. In addition, Clarke’s SLEUTH model has also 
seen considerable application in practical contexts. However, it is unlikely that CA 
and MAS will be used in isolation as planning support tools. They have yet to be 
widely tested in planning contexts, simply because the field of research is quite 
new. More traditional approaches, on the other hand, have enjoyed decades of use 
by planners, policy makers, and urban managers. It is more likely that CA and 
MAS will supplement existing systems rather than supplanting them. It is here that 
CA and MAS can make their immediate contribution, by filling in the gaps that 
traditional models leave, particularly those left open at the micro-scale. 

The discussion thus far has been quite optimistic about the potential of new 
techniques to revitalize operational simulation. The techniques themselves do 
certainly represent the possibility for a ‘revolution’ in the way we simulate urban 
systems. However, there are some imposing barriers to putting those techniques 
into practical use in the real world (Torrens and O'Sullivan 2001). Ironically, 
computing power poses one of the most pressing limitations. CA and MAS 
models have been developed and tested for several cities, but most are quite 
modest in the number of entities that they simulate. Scaling those models up to 
represent an entire metropolitan area, populated with individual agents numbering 



millions would require daunting levels of computing power. However, even here 
advances are being made, particularly in the use of distributed computing to 
provide the computational engines for detailed models. As mentioned, the 
TRANSIMS model at Los Alamos National Laboratories is one such example 
(Nagel, Beckman et al. 1999).  

In addition, there are data limitations on the development of these models for 
practical uses. Conceptually, the idea of simulating individuals and the buildings 
that they inhabit is quite appealing. However, data are not widely available at the 
scale of the individual householder or building. In addition, there are several moral 
issues that arise from the use of individual-level—and often private—data in 
operational simulations. 

Furthermore, micro-scale models, particularly dynamic and process-driven 
simulations, are quite difficult to calibrate, even if data are available. Organizing 
the models as a hybrid that interfaces with ‘traditional’ aggregate-level models 
allows the possibility of scaling up the simulation to meso-scales for validation 
purposes (Torrens 2001b). This is a reasonable solution, but ideally micro-models 
would be calibrated at the scale of the entity or the individual. The emphasis thus 
far in geosimulation modeling has been on pattern-based validation techniques: 
pattern recognition, and measures of match such as the chi-squared and kappa-
statistics. Generally, this sort of calibration focuses on validating the patterns that 
CA or MAS models have generated and comparing those results with historical 
maps of urbanization or land-use patterns, using that as a justification for 
simulating ahead in time. The weaknesses of these approaches have been well 
documented (O'Sullivan and Torrens 2000). Some significant advances have been 
made in using GIS to analyze the patterns that geosimulation models generate, 
including some ‘fuzzy’ recognition techniques. However, much of this effort is 
still bogged down in pattern-based approaches, ignoring the fact that 
geosimulation models comprise pattern and process, form and function. Future 
research may therefore have to look to new process-related validation measures 
such as Monte Carlo averaging, spatial information statistics, and measures of 
complexity. 

Additionally, working at the micro-scale, in some cases, reveals inadequacies in 
the theory of how cities work. The micro-approach betrays some theoretical gaps 
in our understanding of the dynamic interactions that shape our urban systems. 
Indeed, one of the important contributions of these models in academic terms has 
been in providing some justification for a ‘new urban geography’ of the micro-
scale. 

The point that this chapter is intended to convey, however, is that—at least 
methodologically and increasingly in practice—the techniques discussed here 
represent a move towards more theoretically sound, behaviorally realistic, and 
ultimately more useful simulation environments as planning support tools. 
Certainly, these simulations can be developed as proof-of-concept tools and the 



methodologies can be refined in academic contexts in preparation for a day in 
which these tools can be used to plan and manage better cities. It is also likely that 
several of their features will begin to see application in the real world, alongside 
existing ‘traditional’ models (Torrens 2001b); in fact this is already occurring. In 
the meantime, even as abstract tools, these simulations can do a lot for our 
understanding of how cities work and perhaps provide new insights into how we 
might construct a more sustainable urban future. 
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